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Torque Wrench

Introduction

Wrenches come in a large variety of sizes and shapes.
Despite the differences in appearance, all wrencﬁes have two
things in common. (1) All wrenches tend to rotate the objects
to which they are applied; that is, they produce a torque.
(2) All wrenches bend or flex while being used. These two
characteristics will be explored in this module on the torque
wrench. Although the device is a simple one, the principles
associated with its design and operation are fundamental to
many areas of science and technology.

Let's consider the first point of similarity among wrenches,

"All wrenches produce torque." The boxend wrench, pipe wrench,




They differ in how they grip

the wrench. 1In each case a force is applied to a handie or

lever and n twist ox 1s applied to a nut holt, Why
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by their proper names like the
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torgue wrench? Why reserve

the name "torque wrench Yor only one member of the wrenct

now call a torgue wrench? i suppose that it could be ¢zlled a
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"torgue measuring wrench since its only claim to being different
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resullt of the second Characteristic. The handles of a11

of wreasz sotuall makes use

torgue wrench! As You can

that indicate the twisting effacy {torqgqus). The figure sho

some other scales tha+ are commenly used on Ltorque wrenches.

The fact tha+ the handie of the tor tgue wrench flexes and then

i
joy

Ieturns to its original ape makes this use of a wrench

pessible. The property of metal t+hat allows the wrench to be
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deflected and then return is called elasticity. As a result

of this property, the applied torque can be measured and the
mechanic will know when he has tightened a bolt to the manu-

facturer's specification.

Figure 2

This section can be summarized briefly by stating the
general properties of wrenches and the special feature of the

torque wrench. We have seen that all wrenches produce torque

and flex (elastically) when used. The torque wrench is unigue

in that its output torgue is shown by a built-in scale which

is activated as the torque wrench flexes elastically.
These features will be developed in the study of torque,

equilibrium, and elasticity in subsequent sections of the module.

Torgue

Torque is the technical name for the twisting effect pro-
duced by the wrenches that we have discussed. Wrenches aren't
the only devices that produce torque, but we'll stick to them
for the moment. The first experiment is designed to show how
the torque depends on three factors: (1) the force applied
to the handle; (2) the distance from the axis to the point
of application of the force; (3) the angle between the handle

and the line of action of the force.



Experiment 1 ~- Torgue

(A) Hano a mass from the end of the load arm &8 shown in

Figure 3. Use a screw driver to feel how much tquue‘is required
to hold the arm horizontal. Just from the feeling you can get
gome idea of the torque produced by the hanging mass. To get a

number for the torgue, use the torque wrench as shown in Figure 4.
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Suspend several different weights from the end of the arm

and record the scale reading for each weight.

Question 1: If your results agree with one of the following

statements, underline it and cross out the others. (Otherwise
call for help.)
a) The torque is proportional to the square of the applied
force.
b) The torque is proportiongl to the applied force.

c) The torque is inversely proportional to the épplied force.
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{B) With the same weight each time, and with the load arm

herizontal, vary the distance from the axis to the point where
the force is applied. Measure the torque and record your

results for several values of distance.

Question 2: Underline the statement consistent with your

results and cross out the others.
a) The torque is inversely proportional to the distance from
the axis to the point of application of the force.
b) The torque is proportional to the distance from the axis
to the point of application of the force.
¢} The torque is proportional to the square of the distance

from the axis to the point of application of the force.

{C}) In this part you are to determine what happens if the arm

is not horizontal. To discuss the effect some new terms are

;
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needed. In Figuve 5 vertical line is an extension of the
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line along which the force acts. This is called the line of
action of the force. The line labelled "¢" in the figure is
the perpendicular from the axis to the line of action of the

force. It is called the lever arm, or torque arm.



che same weight each time, located at the end of the
load arm, varv the length of the lever arm by changing the
angle of the lever arm. Measure the torgue for each length of

the lever arm and record your results.

Question 3: Underliine the statenment consistent with vour

results and cross out the others.

a) The torgue is proportional to the jever arm.
b} The torgue is proportional to the square of the lever arm.
¢} The tovgue is waversely propo onal to the lever arm.

represent the results of the above measurements. To do this

we will use the follico owing symbols for the physical guantities.

r:  torgue
F: applied force

1 iength of torgue arm

Question 4: Underline the correct equation and cross out

Question 5: Are the units on the torgue wrench consistent with

{3

YOur results? an you think of other units which might be

appropriate for torgue?



In Experiment 1 you were able to show that

(1)
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T is the torqgue, F is the applied force and ¢ is the iever arm

fy

as indicated in Figure 6. Actually torque is defined by the
above. The torque wrench which you used was calibrated so as
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to agree with the defini
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Figure 6

v

Sometimes it is convenient to express the torque in terms
of the distance from the axis to the point of application of the
force. That distance is labelled v in the figure. The angle bhe-

tweerr r and ¥ is labelied o. Using the definition of the sine
¢ = v sin g (2)

T = Fr sin & (3}
Note that the units for t&xque must be the units for force
times the units for length. The most common units in engineering
and technology in this country are pound-foot, pound-inch, or ounce-

inch. Most other countries and many scientists in this country use

the metric system in which the unit for torque 1is newton-meter.
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Example 1: Determine the torque

kY

applied to the nut for each of

s - - % -~ (@] . o ; ) :
(a) o= 909, (b) s= 309, (c) §=0°. \\\\&7 {
The value of r is 12 inches and é F‘
the applied force is 10 1bs. Figure 7

Sclution: The torgue can be cobtained by application of

Eguation 1:

1 = ¥ ¢ gin
= {10 1b} (12 in) {sin 8)

{(a) T = (10 1b) {12 in) {sin 90%)
= {10 1bi {12 4in) (1}

= 1

2]

G lb~in = 10 1b-ft

- . o)
{12 in} {sin 207
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= {10 Ib} {12 in)}{0.5)
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Note that as the angle & decreases from 90° the torgue decreases.
This should be apparent hecause the lever arm is decreasing.

The perpendicular distance from the axis tc the line of action

of the force has these values for the three
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{n) ¥ = r sin 30~ = § in
(c) £ = r gin 807 = ¢
Now use equation 2 to check the values 0T torgue

calculatred above.

such as Example 1, if it is necessary

3
}

ib~in with a foroe of 8 1b when

€ = 607, how long must the wrench handle be?
Static ailibrium

Although the torque wrench is used to produce turning,
1ts most important positicn is when it is stopred. That is
wien the operator has reached the desired value of torgue.
We are going to study the relations among torgues and forces
on obiects which are not moving. Such objects are said to

be in static eguilibrium.

(The term “eguilibrium® applies to a more general situ-
ation. An obiect is in eguilibrium if it is not being accel-

erated, evern though it may be moving. Thus static equilibrium
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is a special case of equilibriom in general However, the
relations we will develop for forces and torgues on objects
in static eguilibrium will also apply toc the more general case
of objects which are moving with no acceleration,)

What is involved in static equilibrium cor the state of
being stopped? Consider Pigure 9 and see if you can tell if
the situations shown are in equilibrium.

Experience tells

Ui
-
&3

that the fish and scale are not going
anywhere and that the scale pulls up on the fish with a force

of 10 pounds and the fish is pulled down with a weight {(grav-

"3

itational force) of 10 pounds. It i

n

important to nocte that
the force exerted by the scale on the fish and the weight of

the fish act through a single point. Forces that act through
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nt are called concurrent forces.
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The second part of Figure 9 shows a situation in which
the forces do not act through a single point. These forces

are calied nonconcurrent. It seems clear that the arrangement
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will balence. Tf the bar weighs one pound, the reading on

4

.

the scale what we might expect? The

’3

librium of this situ-
ation can be upset by moving either welght along the bar or
changing the position of the gcale. If this is done, what

kind of motion results? Do the weights develop a torque about

'\2

the spring scale
b o
In thinking about the situations described above, you
robably realize +hat for an obiect to be in o uilibrium the
P LY .

forces acting on the object must somehow cancel. Likewise,

the torques acting on the object must cancel. We will find



Figure 9



a way of stating more precisely what is meant when we say that
the forces cancel and the torgues cancel.
in the case of the fish hanging from the scale, the force

©f the spring on the fish is up and the f

O

rce of graviiy on
the fish is down. The two forces have the same magnitude, and

pecause of tnelr opposite directicns they cancel each other +o

give a resultant force of zero acting on the fish. For the
object to be in eguilibrium, the total upward force must equal
the total downward force.

If{ there were horizontal forces acting

jAl]

similar regquire-

1. = . S P - e g e o m F 1 -y e g
the total force to the right must ecuzl the total force to

Aithough reference to up-down snd right—left is good

epough for many situations, it is convenient +o have a more

nate
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perpendicular to each other. They provide a convenient
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way of referring to directicns. We can now say that for a body

to be in equilibrium the total force acting in the positive
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X-direction must egual the total force acting in the necative

X-direction.

directrions.
We will
the positive
1n the nec
it is possib
For an cbhiec

Corresponding statements apply to the v and =z

aow agree to call forces positive if they act in
direction of the axis and negative if they act

With this convention

i€ to state the forece condition for equilibrium,
L to be in equilibrium, the sum of the % forces
combining positive and negative
vise for the y and z forces. 7Tt is usually
For an cbiect to be in equi-
be Z&“”fa: -

form ¢f an equation:

(4)

arrow over F is

the forces.

for torgues. Torques
tend to produce ¥ a4 cournterclicckwice
rotation. For an obiect to be in equilibrium the total clock-
wize torque must equal the total counterclockwise torgue. It
ig customary to call counterclockwise torques positive and
ciockwise torgues necative. Then, the torque condition for
equilibrium is: For an object to be irn cguilibrium the resnlé-
ant torgue mist be zero.,

5)
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By applying these statements of the equilibrium condi-
tions vou will rome to understand them better. You will have

the opportunity to apply them in the examples ang problems

‘\P

which follow and in laboratory exercises.
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-...,.,u,. e,

ter st

(D

ick is suspended from a spring balance

o i

by means of s

iy

tring attachad to the 50 cm mark. My, a one

kg obiect, is attached at the 10

Cm mark. Another object with mass ?i? }fff Q é?f/fffézy

f',‘i
M, is attached at the 7% om mark.

he satisfied

that the

upward force on

alance {the reading
on the spring balance) must be just egual to the downward force

2 Tad By e mind s oo
CHerTaq DY The oDSedhs

com the meter siick. That i

D‘k

the spring halance reading will be equal to the weight of the
two objects. Recall that the weight of an cirject is equal to

its mass times the acceleration due to gravity.

= 1 v
- . , 2, , 2
= (L g} (9.8 m/sec?) + M, (9.8 m/sec”)
2 ,

* If vou are not familiar with the difference between we: ght

and mass, read Appendix A,
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But we cannot get hoth PS and M, from this cne eguation.
Ther:zfore we will now consider the torgue condition. First

sbout which tc compute the torgques

ecause the obisct is in
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egquiltibriun and the sum of the torgues about any point must be
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his case it is convenient to choose tne point at
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T2 in %

ig attached; the 50 cm mark. With tnis

chioice, the torque produced by the spring balance is zerc

becaugse the lever arm 18 Zaroc. {The line of sction of this
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force passges through the point selected for tre torgue calcula-
produce a counter-

du2 to M. wouid tend

to produce a clockwize {negative} rotation. Aprlying the torque
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Application of the eguilibrium conditions has enabled us

to cetermine the two unkrowns.

Example 3: Compare the ecuilib-

rium situation shown in the fig-
li' f/"f// /
T ILLL
ure with the preceeding examp] LLLLLLL

Loy
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Can you determine F_ and » ?

o S

(Assume that the weight of the

odd shaped object can be ignored.)

Soluticon: Thie iz very similar

te Example 2. F., has the zame

and the lever arw is the same (40 em}. The lever arm for F

arm for M_. Thereiore we can take

over the results of Lxample Z. The force P must have a value

o 2
Fo = {2 kg){9.8 m/sec*)
, 2
= 19.6 kg m/sec” = 19.6 N

The reading on the spring balance will be the same as

in Example 2.

Fo= 20,4 N
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Ty = Fl(O.l m)

rf
It

(15 N-m)/(0.1 m) = 150 N

Problem 3: For the equilibrium

situation shown, determine the

vatue of . =50 W,

cm

\©

45° "FZ

v z m— —

Fi

Figure 15
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For each of the situations described, pre

of the unknowns {(indicated by blanks in the tables), then
verify the predication with the experimental apparatus. Your
predictions should be based on the two conditions for equilib-

rium; ¥ = g

For cases A through D, the arms are both horizontal as

A

- 0f the hubk and arm

¢

shown in the figure., W is the weaigh

assembly, o - B b |

r : ' A

| j lf ‘ \“\/

| Case My M | ry r,  Fo- W

i B . {: ‘. <3

| {(kg)l (Kgi Tty “m © () 1 -
; ! T
. ; i >
P A D720 0.40 030 | j

i % ‘
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For cases through G, the left arm is horizontal and

the right arm is 45° below the horizontal, as shown in the figure,
. . et rhio

I
o
.
T
"
o
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For cases H through J, the arms form a right angle,

as in the figure. fThe angle 6 which the right arm makes with

the vertical varies from case to case.

Case Ml M2 rl r2 6
H 0.50 0.10 } 0.22 | 30°
I 0.2010.201] 0.15 60°
J 0.5510.2810.1210.24

Figure 18
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More Equilibrium

The equilibrium situations we have considered so far
have had a simplifying feature: the forces were all vertical,
either straight up or straight down. Horizontal forces add

a minor complicating feature which can be handled easily.

Example 5: The board shown in

i st oot

the figure is in equilibrium as éxgk
2

a result of the four forces

et e f —cr
indicated. The board is 2 ft Ff
wide and 4 £t high. If Fq is
20 pounds, what are the values F
of ¥ Fo, and F.,?

1 ! 2 4 ~ Tk . S
| | Y Fq

Solution: The problem isn't as
difficult as it locks. The Figure 19

force condition for equilibrium tells us that the net vertica

}...J

force must egual zero and that the net horizontal force must

equal zero.

Now we must use the torque condition for egquilibrium.
We are free to use any point for calculating the torques. One
convenient point is the upper left corner of the board, because

with this choice neither Fl nor F, produce a torque. The

lever arm for F, is one ft and the lever arm for F4 ig four feet
- B

S50

-
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F4(4 £t) = (20 1b) (1 £ft) = 0
F = (20 1b-ft)/(4 ft) = 5 1b
We now know the forces we were asked to determine;

S F,=151b
1 G

o= 20 1b
2

Problem 4: Determine 4, Fye
See Figure 20, Fy 2 f1

and F .
2

One more complication will
now be studied; what if a force 4 4
is neither vertical or horizon=- _ Jhmq“ S5 1b

d

tal, but somewhere in between?

Such a situation can be handled *

53:410!b

which will now be described. Figure 20
Figure 21 shows how to
obtain the components of a force.

The x-~component of the force is

—

the projection of the force on

the X~axis. The y~component is

the projection of the force on

the y-axis. If F makes an angle

of ¢ with the x-axis, then Figure 21



e
where F, is the symbol for the x-component of F. Similarly

F = F gins

wp

where Fv is the y-component of the force. The effect of the

force F is exactly the same as the combination of F, acting

parallel to the x-axis and Fy acting parallel to the y-axis.

Ixample 6: If the object is in

N
20}
equilibrium, what are the values fo
ot oy T " -~ F‘ p OQ
of El and I’Z. vt ,_,_“_..‘3‘,-4..‘_..
Solution: If we first replace P, Fé

by its horizontal and vertical

components, we can then proceed Figure 22

as in previous examples. Let E%lbe the horizontal component
P

cf F4, and F, be the vertical ccmpdnent,
= SV

Fa = F, cos 30°% = (20 N)(0.866) = 17.3 N
Fy, = F sin 30° = (20 N) (0.5) = 10 W

From the force condition for equilibrium,

1 3h
and F2 = FBV
Therefore, -

F. = 17,3 N

1
and ¥, = 10 N
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ggamg}e_z; A beam is supported

= 6o
as shown. The weight of th@@\\\ !
i i
beam, F,, can be treated as a¥ \\{ , !wﬁj/mﬁw_ !rn
- R
single force acting at the center.
Y T ” Al ; z:
Determine Fz, 13, and F4. i;)‘
Fy, = 40 N. C
Figure 23

Solution: All forces except F, are either horizontal or
vertical. Therefore let's resolve F; into its horizontal and

vertical components.
Fi, = Fp cos 60° = (40 N) (0.5) = 20 N

. . O T -
¢ — i sin & = - {4 N = - . N

The reason for the minus sign in the value of Flh is that it
acts to the left, and T am choosing directions to the right

as positive, Applying the force condition for equilibrium,

Take torques about the left end of the stick. Roth Fl and

F4 have zero torgue arms. So
-F, (1 m) - Fo(2my =0
or B, o= g

Either F2 or F, is negative! What does this mean? t means
~F
that the negative one is actually acting up, not down as

shown in the figure.
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To obtain the answer, note that we have two equations in

two unknowns:

g
Lad

and

b
NS
il
1
B
Frj
[#8]

Solving,

F_ = =2F_ = 40 N
So F3 actually acts up, not down.

Problem 5: A 3000 1b car is

e ot s it

being towed as shown in the figure.

The weight of the car acts as

ot

i

though it was all concentrated at
a peint 10 ft in front of the rear
wheels. The tow chain is attached
at a point 18 ft in front of the

rear wheels and 3 ft off the ground.

Determine ¥ , F , and .
1 2 =
Example 8: A torgue wrench is
used to tighten a nut on a box as
shown in the figure. Determine A e
F!
the maximum force, F, that can be i
. . . : G- A
applied without tipping the box.
Also determine the torque associ-

ated with this force. The box S L —a )
. Figure 25

-
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weighs 100 pounds and is 4 feet long. The wrench has a two
foot handle. [Hint: When the box is about to tip, the
force of the floor on the box will be acting on the right-

hand edge of the box.}

Sclution: 1If we take torques about the lower right hand
corner of the box, then the force of the floor on the box
will not appear in the torque equation. (The lever arm is

zero.) The equation for the torque condition is
W(D/2) - P(D + L) = 0

Solving for F,
F = W[D/(2D+L)]

= (100 1b) [4£ft/(8Fft+2ft)] 40 1b

i

The greatest force which can be applied is 40 1b. The torque

applied to the nut by this force is readily obtained.

T = FL = 80 pound-feet
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Experiment 3 -~ The Cantilever Beam

The flexing property of the torque wrench will be studied
in this experiment. Instead of using real torque wrench
handles {(which often have somewhat complicated shapes), we
will take measurements on uniform rectangular beams of metal.
Beams which are held rigidly at one end and loaded along the
length or at the other end are called cantilever beams. Thus

in studying the behavior of the torque wrench handle you are

also studying the cantilever beam.

Figure 26
(A) Set up your apparatus as shown in Figure 26. Makebthe
length cof the beam 40 cm, measured from the holder to the
end of the beam. Record the position of the end of the beam
with no load attached. (In all of your measurements of position,

sight over the top of the beam, with your eye at the same. level
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as the top of the beam.) Now make measurements of the
position of the beam for each of several weights at the end.
Choose the weights tc cover a range of deflections up to
about 30 mm. (Some beams may be too stiff to get that much
deflection.) Record the positicn for each value of load
attached. Also record the breadth, B, and depth, D, of the
beam. Subtract the no-load position from all your readings
so that you will have the values of actual deflection. Plot
your data, putting the deflection on the horizontal axis and
the mass on the vertical axis. {Note that the applied force
is mg, s0 you are plotting F/g versus deflection, not force
versus deflection.)

With a ruler draw the straight line which best fits
your data points. Determine the slope of the straight line.
(Be sure to indicate the units for the slope.)

-(B) If your apparatus and procedure in part (A) were good,
your data points were very close to a straight line. This

means that the forece is proportional to the deflection:
B o= kx

The constant of proportionality, k, is called the spring constant,

or force constant. Determine the value of k from the slope of

your straight line. Be sure to include units for k.

~-(C) The spring constant is a ﬁeasure of the stiffness of the
beam. From experience you know that, for beams of the same
material, the stiffness depends on the dimensions, L, B, and D

(length, breadth and depth). Make a guess (perhaps a wild

-
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guess) on how the spring constant depends on each of the
three dimensions. (Clug: it depends on each dimension to
some power; that is, D™, where n is a positive or negative»
integer.) For example you might guess a direct propoftion,
Or an inverse proportion, or proportional to the inverse
Square, etc. To check on your guess you could repeat the
experiment you have done, using beams with different dimensions.
However, you may be able to get the results which other students
have obtained on different beams. If you pool your results,
you should be able to figure but how the spring constant
depends on each of the dimensions. For example you might
have available the value of k for two beams which are identical
except that one is twice as thick as the other. If the spring
constant for the thick one is one quarter that of the thin
one, this would suggeét that the spring constant is inversély
proportional to the square of the thickness.

If your pool of data does not contain enough information,
fill it in by doing more experiments. It won't be necessary
to completely repeat the process of part (A). You have already

shown that

Therefore

k = F/x

So one or two measurements of F and x should enable you to
get the value of k for each beam. Eventually you should be

able to write the spring constant in this form:

k = (a number) x (L to some power) x (B to some

power) x (D to some power)
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Hooke's Law

Cne of the results of Experiment 3 is that the deflection
of a cantilever, or the flexing of a wrench handle, is pro-

portional to the applied force:

Fo= kX
There are many other systems which behave this way. The
force regquired to stretch a spring is proportional to the

Qe

{
K

L
<] —

Figure 27
amount of stretching. If a pendulum is pushed a short dis-
tance from its equilibrium pcsition, the force reguired to
hold it there is proportional to the displacement. Systems

which have this property are said to obey Hooke's Law: The

force required to produce a displacement is proporticonal to

&

the displacement.
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Example 9: The graphs below show how the force depends on

displacement for three different systems. Which one follows

Hooke's Law? What is the value of k?

200

100}

g i
| 2 3 X {(n)

Figure 238

Solution: You may recall that F = kx is the equation of a
straight line. So only in system B ié the force proportional
to the displacement. The slopg of the straight line is the
value of k. When ¥ increases by one meter, ¥ increases by

100 newtons. Thus the value of k is 100 newtons per meter.
Notice that for system A, whan the displacemenrt is doubled,
the force goes up by a factor of fFour. At one meter the force
is 75 N while at two meters the force is 300 N. PFor system

-

C, if the displacement is doubled, the force goes up less than

a factor of two.
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Problem 6: The table below is for a spring which follows

Hooke's Law. Determine the spring constant and fill in the

blanks.
Displacement (m) 0 0.05 | 0.1 0.7
Force (N) 0 20 100

The Hooke's Law behavior of many complex systems can
be explained starting from the behavior of simpler systems.
For example, the bending of a torque wrench or cantilever
beam is determined by the geometry and the properties of the
metal. We will describe how the bending of a cantilever
beam is related to the stretching of a piece of the same
material.

If a weight is suspended by a rod as shown in Figure 30,

the rod will stretch. When the weight is removed, the rod

Lo

| Rod

-1 x

Weight

Figure 29
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to its original length. Experiments show that the

in length is proportional to the applied force.

In ctiner words, the red cbeys Hooke's Law. Figure 30 shows
a typical result of such an experiment. Note the graph

shows & straight line behavior until the force gets to a

value; then the graph curves. So it isn't gquite
correct to say that the rod obeys Hooke's Law. We should

say that it obeys Hooke's Law if the force <isn't too big.

this is true for any Hooke's Law svstem. There is
a limit to how much you can stretch or bend or twist something.
Tf you go beyond this limit, the displacement is no longer
proportional to force, and the device will probably be perman-

imit.

[

ently deformed. This limit is called the elastic

From now on we will restrict our attention to the straight
Line region, or Hooke's Law region,

The behavior of the rod can be described by the eguation
¥ = kxz

The constant of proportionality, k, is cailed the sSpring
constant, or force constant. Thé form of this equation is
the same as for the bending of the cantilever beam. However,
in this case it refers to stretching, not bending, and the
value of k will be different.

A similar experiment could be performed in which the
rod is conpressed instead of stretched. Such an experiment
shows that not only is the compression proportional to the
applied force, but the spring constant for compressing is the

same as for stretching. .
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What determines the value of the spring constant? It
depends on the material the rod is made from, the length of
the rod, and the cross-sectional area.

The dependence of the spring constant on the crogs-

]

sectional area can be deduced with the aid of Figure 31.

p

1"} %&“‘x
LW W

STl wotsh  ma e

Figure 31

Tf the twe rods are Brough

t together, the new system will have

s

the same length snd the same amount of strecching, but twice
the area and twice the applied force. fThat isg, if you double
the area you double the foree required for 2 given increase
in length. 8o the Spring constant is proportional to the
crosgs~-gsectional area.

The way k depends on lergth is illustrated by Figure 32,

is applied in each of the two caszses, the
tension will be the same., Thus each unit of length will

stretch the same amount, nraduc1ng an increase in lﬂngtn which



ZXTj

Figure 32
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is.QKOportional to the length. So for a fixed force the
increase in length is proportional to the original length.

This leads to the conclusion that the spring constant is
inversely proportional to the length. Combining the dependence

on length and cross-secticnal area we have
k =¥ (a/1)

where A is the cross-sectional area, L is the length, and Y
is a constant for a particular material. The name for Y is

Young's modulus. Its value can be determined experimentally

by finding the value of k for a rod with known length and cross-
sectional area. Table 1 gives the approximate value of Young's
modulus for several materials. The precise value depends on

how the metals are prepaved.

Table 1
Material Young's Moduius (17/m2)
Aluminum 7 x 1019
Brass 9 x 1010
Cast iron 9 £ 1010
Copper 12 x lGlg
Steel 20 x 1010

) s - 2. .
Example 10: A brass rod one square millimeter (10 6 m ) in

cross-sectional area and two meters long is used to support
& chunk of material weighing 100 newtons. Determine the

change in length caused by the load.



Solution: F = kx
and k = Y{(A/L)
Therefore X = F/k = PL/YA

Use the data given in the problem together with the value

of Young's modulus from Table 1.
_ ) -3
X o= {100 N) (2 m) = 2.2 2 10 " m

‘ -6 2
(9 x 10%% w/m?) (1076 w2,

= Z.2 mm

Problem 7: A greel rod has a cross—-gectional area of two

6

square millimeters (2 x 19 mz) and a length of 10 meters.

How much force ig required to stretch it two millimeters?

It might seem that the bending of a cantilever is only
remotely related to the streching and compressing of a rod.
However there is a close relationship, as indicated by Figure

33. When the beam is bent down, the top parts are stretched

v f‘;\\\,\\

Figure 33
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and the bottom parts are compressed. Therefore we might
expect the force constant for the cantilever to depend on
Young's modulus. It also depends on the length (L), the
breadth (B), and the depth (D) of the beam, as you probably
discovered in Experiment 3. A careful analysis (which we
will omit) leads to this equation for the spring constant for

a cantilever.

e

= (v/4) (8p3/13)

The Y in this equation is the same Young's modulus that we
met in the stretching and compressing of a rod. Thus the
same physical property of the material enters in both stretching

and bending.

Example 11: Determine the Spring constant for a steel canti-
lever beam which is 40 centimeters long, one centimeter wide

and three millimeters thick.

Solution: This reguires a straight ferward application of

the equation for the spring constant for a cantilever beam:

(v/4) (83,13

oo
]

J
§

W

5%

it

10 .
20 x 107 N/m°  x iggwfwg)(g x 10 7 m)
4

-

10 - -0
(5 x 10 ) (10 )(27 %x 106 °) N/m
(0.064)

i

it

211 N/m
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Probliem 8: Using vour data from Experiment 3, determine

Young's modulus for the material in one of the beams you

used.



Appendix A
Weight and Mass

Weight and mass are two entirely different concepts.

The weight of an object is the force of gravity on an object.
For example, if you hold a chunk of iron in your hand, vyou
can feel the weight, which is due to the gravitational at-
traction which the earth exerts on the chunk of iron.

The mass of an object is a measure of its resistance to
change in its moticn. You can feel this property when you
throw an object; you must exert a force on the object to
change its motion from a state of rest to one in which it is
moving. Similarly, you feel it when you stop a moving object.
Scientists have a precise definition for mass, but we won't
introduce it here becauvse we don't need it. At this point we
only need to recognize the difference between weight and mass,
and to establish how to work with them.

fou know from experience that the heavier an object is,
the harder it is to change its motion. 1In other words, the
greater the weight, the greater the mass. One of the most
remarkable aspects of nature is the very simple way in which
welght and mass are related; the weight is proportional to
the mass. If we let W represent the weight and M the mass,
then

W = Mg
where g is simply the acceleration due to gravity. The

value of g near the surface of the earth, in the metric system



oSf units is 9.8 m/sec.2 Thus a one kilogram cbject has a weight of
3.8 newtons. In general, to find the weight in newtons, multi-
ply the mass in kilograms by 9.8.

The relation between weight and mass emphasizes an important
point; although the mass of an object does not depend on its
location, the weicht does. A one kilogram object will weigh
9.8 newtons on the earth, but only about one-sixth that much on
the moon. So it would be easier toc hold it on the moon (compared
to the earth) but just as hard to throw it at some specified

speed.



Define the following:

(a)
(b)
(c)
(4)
(e)
(£)
(g)

Sample Examination Questions

Torgue wrench
Torgque

Lever arm
Equilibrium

Static equilibrium
Spring constant

Cantilever beam

Al

State the conditions which the forces and torques must satisfy

for an object to be in equilibrium.

a 100 newton force makes an angle of 30° with the horizontal.

For the 81tuation shown in the
diagram, determine the lever arm =
and the torque associated with
the force F. Use the point P

for the axis.

The stick shown in the diagram is

F3'

in equilibrium. Determine F, and

(The weight of the stick can

be ignored.)

A 20 pound 8 feet long sign is held

in equilibrium by means of a pin

Pinl% ‘
and a wire as shown. The weight Ly

of the sign acts through its

,Determine the horizontal and vertical components of the force.




center. Determine the tension

in the wire and the vertiéal and

horizontal components of the

force of the pin on the sign.

Describe the behavior of systems which obey Hoocke's Law.
The graphs below show how the force depends on displacement
for three different systems. Which one fcllows Hooke's

Law? What is the value of the spring constant?

40 - ’ ¢ . ,..f/
30
F 20
. /\__
5 {m)

The equation for the spring constant for a contilever is

k = (¥/4) (BD3/13)
If a steel beam two meters long and one centimeter thick
is to have a spring constant of 5 x 1012 newtons per meter,
how wide must it be? (Youngs modulus for steel is 20 x 1010

N/m2)



i. {a)

(e}
(£)

(g}

Sample Examination Answers

A torque wrench is a tool which can apply a torque to
a nut or bolt and which has a scale which indicates how
much torque is being applied.
Torgque is the twisting effect produced by an applied
force. It is defined by the equation

T o= Pg
where © iz the torque, F is the applied force, and &
is the lever arm.
The lever arm is the perpendicular from the axis to
the line of action of the force
An cbject is in equilibrium if it is not being ac-
celerated; +that is, both its translational speed and
rotational speed must be constant.

n object which is not moving is in static equilibrium.
If a system responds in such é way that the force re-
quired to produce a displacement is proportional to
the displacement, the constant of proportionality is
called the spring canstaht.

Beams which are held rizyidly at one end and loaded
aleng the length or at the other end are called canti-

lever beams.

2. For an object to be in equilibrium, two conditions must be

satisfied:

(a) The resultant force must be zero,

(b) The resultant torque. about any axis must be zero.

-



3. Horizontal component = 86.6 N
Vertical component = 50 N
4. Lever arm = 1.73 m
Torque = 34,6 N-m
5. F3 = 5N F, = 153
6. "Mension = 20 1b
Horizontal force of pin = 17.3 1b
Vertical force of pin = 10 1b
7. TFor systems which obey Hooke's Law, the force required to

produce a disvlacement is proportional to the displacement.

8. System B obeys Hocke's Law, and has a spring constant of
10 newtons per meter,

9. 8 centimoters
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L8

ue ch, lever arm, eguilibrium, static
equilibrium, 7 cantilever beam.

must

State the conagi sorces and torgues

point of application on an object, determine the iever
arm and the torque for = specified awxis.
Solve squilibriys proviems of the type illustrated by

the foil@wiﬁg eXatiples in the text: 2, 3, 4, 5, 5, 7, and &,

of gystems which obey Hoocke's Law.

Given empiri either tsbular or graphical

L du
1
fu
]m

f«;
=
-
O
Al
5
oy
s
o
[
o3
-

form, on how 4 system responds to an applied force, deter~
mine whether it oheys Hooke's Law; if gso determine the
Spring constant,

X

;.4.

Given the e5u:

L’J

on for the Spring constant for a4 cantilever,
and the values for ali but one of the physical guantities

appearing in the equation, determine the unknown .
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