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The Guitar

INTRODUCTION

In this module you will use a guitar to
learn about vibrations of objects, the nature
of sound, principles of wave motion, and the
physical basis of music. Many of the concepts
and principles presented also apply in some
way to other musical instruments and to
non-musical sounds. The concepts and prin-
ciples can even be used to describe completely
different things, such as water waves and light.

There are no special prerequisites for this
module. It is assumed that you know how to
measure length and mass in the metric system
of units, given the proper equipment.

GOALS FOR SECTION A

The following goals state what you
should be able to do after you have com-
pleted this section of the module. These goals
must be studied carefully as you proceed
through the module and as you prepare for
the post-test. The example which follows each
goal is a test item which fits the goal. When
you can correctly respond to any item like
the one given, you will know that you have
met that goal. Answers to the items appear
immediately following these goals.

1. Goal: Understand how the details of
“guitar construction and how it is played
affect its loudness, pitch, and quality.

Item: Plucking the lowest string of a
guitar six or seven inches from the bridge
produces a sound of a certain pitch and
quality. Using the same guitar, how
could you produce a sound with the
same pitch but a more hollow quality?

2.  Goal: Understand the concept of elastic-

ity and how the elasticity of a material
affects its vibrations.

Item: Arrange the following objects in
order of increasing elasticity: a strip of
paper, a wooden tfongue depressor, a
thin, flat strip of steel.

3. Goal: Understand what is meant by the
fundamental and its harmonics, and how
these can be produced in a string fixed at
both ends.

Item: How can you produce a guitar
string vibration consisting primarily of
the fourth harmonic? Draw the pattern
of vibration for the fourth harmonic.

4. Goal: Know how the pitch and quality

of sound are related to string vibrations.

Item: A guitar string is plucked in a
normal way and produces sound with a
certain pitch. How can you raise the
pitch by one octave without plucking
the string again?

Answers to Items Accompanying
Previous Goals

1. Pluck the same string exactly at its
midpoint.

2. Paper, wood, steel.

3. Pluck the string at the normal position,
then touch it lightly at a point one-
fourth of its length from either end.

4. Touch it lightly at its midpoint.




SECTION A

WHAT GUITARS DO

Guitars are used to change vibrations of
a taut string into sound. Ancient Egyptian
and Hittite carvings show guitar-type instru-
ments being made and played as far back as
3000 years ago. One might imagine a man
toying with the variations of his bow-string
“twang” as the beginning of stringed instru-
ments. By a combination of circumstance and
intuition, craftsmen and players over genera-
tions have developed the sound board, the
fingerboard, more strings, a body, and sound
holes in a variety of stringed instruments. Our
word “‘guitar” is much like the old Spanish
word guitarra, which possibly was derived
from the 2500-year-old Sanskrit chhatur-tar,
meaning ‘“‘four strings.”

The guitar of today is similar to the old
Spanish guitar with six strings and an “hour-
glass”” body. This type of guitar, shown in
Figure 1, is one of the most popular of
instruments. It is estimated that in the U.S.
alone, there are 15 to 20 million guitar
owners.

To become more familiar with this
instrument, do Experiment A-1.
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Figure 1.



EXPERIMENT A-1. The Guitar and Its Sounds

This experiment requires the use of a
tuned guitar, a guitar pitch pipe, a tin-can-
and-wire telephone, and a long brass spring.

Directions to guide your initial study of
the guitar are contained in the following
paragraphs. Each time you come to a num-
bered question, write an answer based on
your observations on the work sheets pro-
vided at the end of the module. (The guitar
strings are numbered beginning with the
smallest diameter, which is the first or high-E
string, and going to the sixth string. The
common tuning of the guitar, starting from
the first string, is E', B, G, D, AA, EE.)

NOTE STRING
r ) E |

B 2

G 3
P D 4
o  AA 5
P EE 6

Figure 2. Tuning of the guitar.

Remove the largest diameter string (the
low-E or sixth string) from your guitar.
Stretch it tightly across your thumbs as
shown in Figure 3 and pluck it with your
little finger. Notice that the “twang” is not
very loud.

PLUCK HERE

N
I

Figure 3.

You might think that the sound hole of
a guitar picks up this quiet sound and
amplifies it. You can check this assumption
by plucking the taut string while holding it

just over the sound hole. Be careful not to
touch the guitar.

1. Is the sound louder? Does it sound
different? If so, how?

As you pluck the tightly held string, feel
the vibrations of your thumbs and hands. The
vibrating string causes a twang, but a sound
also emanates from your vibrating thumb.
With your thumb about a centimeter away
from your ear, listen to the vibration. Com-
pare the sound of the vibrating string and the
sound of your vibrating thumb. By lightly
touching your thumb to your ear you can
hear its vibrations more loudly.

2. Describe the sounds caused by the vi-
brating string and your vibrating thumb.

How do these sounds differ?

You have just seen that a vibrating string
creates sound in two ways: 1. directly,
which is the ‘“twang” of the string, and
2. indirectly, by vibrating whatever is con-
nected to its ends. Either way, a vibrating
object causes sound. Walk around the lab and
look for a variety of objects with flat surfaces
such as a table, the floor, a wall, a window, a
door, a desk, the chalkboard, a cardboard
box, etc. Hold the string taut and press it
under one thumb against such a surface, as in
Figure 4. Pluck the string. Do this for several
surfaces.

Figure 4.



3. What kind of surface best “sounds out™
the vibrations you feel in your hand?

Using the same procedure, sound out
different places on the guitar.

4. Which spot on the guitar do you find is
best for producing the loudest sounds?

Sound coming from a vibrating surface
connected to a string may remind you of the
string-and-tin-can telephone which children
often make. It consists of a wire stretched
tightly between the bottoms of two tin cans.
Each can has an open end into which you can
speak and listen.

You are provided with such a device.
Clamp one tin can to a table as shown in
Figure 5 and position a transistor radio so
that its speaker faces into the can. Turn on
the radio and stretch the wire tight to hear
the sound in the other can. First touch the
bottom of the other can. than tanch the wire,

Figure 5.

5. What is the bottom of the other can
doing? What happens to the sound when
you touch the second can? What hap-
pens to the sound when you touch the
wire?

Remove the can from the “receiving”
end of the wire. To hold the wire taut, take a
small length of it near its free end and loop it
around your thumb; then press your thumb
(with the wire wrapped around it) to your
ear. While the wire is pressed against your ear,
touch the wire with your free hand.

6. Can you hear the vibrations? Does
touching the wire stop the sound? Can
you stop the sound by holding the wire
still? Can you then draw any conclusions
about the way in which the wire must be
vibrating?

To demonstrate in slow motion two
possible types of wire vibrations, we can use a
long spring which has been stretched out. (See
Figure 6.)

_,
I DIIIMNRINIY), j j

STRETCHED COMPRESSED

Figure 6. Compress the end of the spring and sudden-
ly release it.

QIR Y,

Place the spring along the floor with one
end held fixed. Stretch the spring to two or
three times-its original length, holding the free
end in your hand. The spring will now behave
much like a taut wire. As indicated in Figure
6, “bunch up” the last few inches of the
spring, then let go suddenly. (Do not let go of
the end of the spring.) Watch the motion of
the spring. You will see a bunched up
(compressed) section between two stretched
sections moving along the coiled spring. This
action is called a longitudinal pulse.

As indicated in Figure 7, pull the last
few inches of the spring to one side and
suddenly let go. The resulting action is called
a transverse pulse.

Watch the motion of the pulse as it
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Figure 7. Pull the spring to one side near the end and
suddently release it.

moves along the spring, hits the fixed end,
and comes back to your hand.

Repeat this procedure a few times for
both types of pulses, paying attention to the
feeling in your hand when the pulse comes
back and hits it. When a pulse hits the fixed
end of the spring and comes back, we say that
the pulse is reflected at that end. You can
detect the reflected pulse best if you do not
let your hand touch the floor. To try a
combination pulse, compress the last few
inches of the spring and simultaneously draw
the spring to one side, as shown in Figure 8,
then let go.

COMPRESSED
Figure 8.

You have seen (and felt) that the ends of
a taut wire can vibrate with a side-to-side
motion like that of a transverse pulse. The
vibration of the bottom of the tin can implies
that a taut wire also vibrates with a to-and-fro
motion like that of the longitudinal pulse on
the spring. You also found that the guitar
bridge, where the vibrating strings are con-
nected, is the best place on the guitar to
sound out transverse vibrations.

Re-install the sixth string on the guitar.
Following the instructions provided with your
guitar, tfune the string. Then raise the sixth

string above the others by sliding a pencil
under it, but over the others somewhere near
the nut. At or near its midpoint, carefully
pluck the string so that transverse vibrations
are moving up and down (perpendicular to
the sound board). Pluck the string by holding
it between your thumb and forefinger, pulling
it up, and letting it go. You can determine if
the string is vibrating correctly by sighting
with your eye. Compare the loudness of the
sound you hear to the loudness heard when
the string is plucked so that its transverse
vibrations are parallel to the sound board.
Repeat this observation several times to be
sure your results are dependable.

7. Which direction of vibration produces
the louder sound? What can you con-
clude about the way vibrations are trans-
ferred to the guitar bridge and sound
board? For either direction of vibration,
how would you pluck the string if you
wanted to produce an especially loud
sound? Were you careful not to let this
way of changing the loudness influence
your comparison of the sounds from
strings vibrating in two different direc-
tions?

When you installed the sixth string, you
probably noticed that its sound changed as the
string was tightened. Let us now find out how
the sounds of guitar strings are affected by
tightening the strings or shortening them.

Remove the pencil and hold the guitar so
that you can pluck the guitar strings. Pluck
the six guitar strings, one at a time. A freely
vibrating guitar string is referred to as an open
string,

Pitch is a word we use to differentiate
musical tones. We say that one musical tone is
higher or lower in pitch than another. Or, the
two tones may have the same pitch. For
example, a woman’s voice usually has a higher
pitch than a man’s. The pitch produced by
plucking guitar strings becomes higher from
largest string to the smallest string.



Pluck any one of the six strings and
listen to its pitch. Shorten the portion of a
string by pressing it with your finger so that
the string is held firmly against the first fret
below the nut. Now pluck the string again.
Continue to shorten the string one fret at a
time, pluck the string, and listen to the pitch.

8. Does the pitch go up or down as the
string is shortened? Does the same result
hold for all strings?

Pluck one of the strings with a guitar
pick at a point over or near the sound hole.
We call this sound rich or full. Next pluck the
same string near the bridge. The sound pro-
duced is called tinny. Finally, pluck the same
string exactly at its middle. (The midpoint is
halfway between where the string crosses the
nut and where it crosses the bridge.) This
sound is called hollow. Pluck the string at
each of these positions in succession. Can you
distinguish between these different sounds?
Rich, tinny, and hollow are examples of
words used to describe the quality of sound.

Have your lab partner pluck another
string to produce one of these three kinds of
sounds. Turnyour back. Ask him to pluck the
string in different places until you can correct-
ly identify where he is plucking it each time.

Pluck a string near the sound hole with a
guitar pick and with your finger or thumb.

9. How is the quality (rich, tinny, hollow)
of the sound affected by using a pick?

Strum the fifth string with the sound
hole open, and again when it is covered with
an index card. You may want to cover and
uncover the sound hole a few times while one
of the strums is sounding.

10. Describe any difference you hear in tone
guality.

With the hole covered, pluck the string
at the place that would ordinarily result in a
rich sound. Then uncover the hole and pluck
the string so as to produce first a tinny sound
and then a hollow sound.

11. Does covering the hole cause the sound
produced by a normal strum to change
from rich to either tinny or hollow?

Pluck each of the other guitar strings
near the sound hole, while covering and
uncovering the hole.

12. Does the open sound hole emphasize any
particular open string sounds more than
others? If so, which strings are most
strongly emphasized?

Pluck a string near the sound hole so as
to produce transverse vibrations that are
parallel to the surface of the guitar finger-
board. Then pluck the string to produce
vibrations that are perpendicular to the finger-
board.

13. Is there any difference in the quality of
these two sounds?

Let us now see how the tension (tight-
ness) and diameter of a guitar string affect its
pitch. Pluck the string which has the lowest
pitch. By turning the tuning peg to which it is
attached, increase the tension on the string
and pluck it again.

14. What effect does increasing the tension
of a string have on its pitch?

Following the instructions provided with
your guitar, tune each of the strings.

At the midpoint of the strings, tape a
ruler under the strings for use as a scale, as
shown in Figure 9. Cut a small rubber band
so that you can loop a single strand around a
string. Slip the rubber strand around the first
string above the ruler and grasp both loose
ends between your thumb and forefinger.
You can now displace the string from its
normal position by pulling along the ruler on
the rubber strand, and you can measure the
displacement by sighting down on the ruler.

Use the rubber band to displace the
midpoint of each string a fixed amount (say
1% in). Measure the length of the stretched
rubber strand when it is holding a string in
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Figure 9.

this displaced position. You can do this by
taking the reading on the ruler where you are
holding the open ends of the rubber band and
subtracting it from the reading on the ruler at
the place where the rubber band pulls on the
guitar string. This length is a measure of the
force required to hold the string in its
displaced position, and this force increases
with the tension in the string. Thus by
comparing the lengths of the stretched rubber
strands required to hold the various tuned
strings in equally displaced positions, you can
compare the tensions in the six tuned guitar
strings.

15. How do the tensions compare? Are they
about the same or quite different?

Since the notes produced by plucking
guitar strings of equal length have different
pitches even when the string tensions are
approximately equal, something about the
strings themselves must affect the pitch.

16. What difference is there between any
two of the six strings? How does this
factor seem to affect pitch?



SUMMARY OF THE RESULTS OF
EXPERIMENT A-1

We will now summarize what you have
observed about how a guitar makes sounds,
and we can state some conclusions drawn
from these observations and others like them.

1. A vibrating guitar string causes both the
bridge and the sound board to vibrate.
Most of the sound made by a guitar
comes from the vibrating sound board.
In general, a vibrating object causes
other objects which touch it to vibrate.
Objects with thin, flat surfaces are more
easily set into vibration than heavy
objects, assuming that each is elastic.

2.  You observed that a wire connecting one
tin can to another transmits sound from
one vibrating can bottom to the other by
vibrating longitudinally. You also saw
that the sound board of a guitar pro-
duces sound by vibrating in a direction
perpendicular to the surface of the
board. You found that the sound board
vibrations are most readily excited when
the strings vibrate transversely in a direc-
tion perpendicular to the surface of the
sound board. You also observed that
longitudinal and transverse pulses move
along a coil at different speeds. In
general, springs and wires can be made to
vibrate in either a transverse or a longi-
tudinal manner, or a combination. The
speeds at which transverse and longitudi-
nal pulses move are not the same.

3. The sound made by a guitar is loud when
the string that excites the sound is
displaced a large distance from its rest
position before it is released. The maxi-
mum displacement at a point on a
vibrating string is called the amplitude of
the vibration at that point. In general,
the loudness of a sound produced by a

vibrating object is greater when the
amplitude of vibration is greater.

A sound is made by plucking a guitar
string. The pitch of the sound becomes
higher if any one of three things is done:

a. The tension in the string is increased.

b. The length of the portion of the
string that vibrates is decreased.

c. The string is replaced by one with a
smaller diameter (a less massive
string for that length).

In general, the pitch of sound from a
vibrating object is higher for vibrating
objects of small dimensions, it is higher
when forces required to displace the
object are large, and it is higher for
vibrating objects of small mass, but
having the same dimensions.

The quality of sound made by a guitar
is influenced by these factors:

a. The place where the strings are
plucked or strummed

b. The object used to pluck the strings

c. Whether the sound hole is open or
closed

In general, the same factors apply to any
stringed instrument. Other factors, more
difficult to investigate, such as materials
and construction, also affect the quality
of sound from stringed instruments.

The open sound hole helps to increase
the loudness of the sound made by a
guitar and to make it richer. This effect
is more noticeable for low-pitched
sounds than for high-pitched sounds.



VIBRATIONS

What causes an object to vibrate?

A tuned guitar string that has not been
plucked is at rest. The string is under tension.
Every piece of the string is being pulled by
adjacent parts of the string. A particular piece
does not move because the pulls exerted by
its neighbors are equal in magnitude and
opposite in direction (see Figure 10). The
result is that any piece of the string feels no
net force.

FLerT = FRIGHT

Q S

/
SMALL PIECE OF STRING
UNDER TENSION

Figure 10.

If you grasp a piece of string and pull it
away from its rest position, neighboring
pieces of string are pulled aside also, but not
as far. As shown in Figure 11, the two
neighboring pieces of string now try to pull
the piece you are holding toward its original
rest position. The two forces are called
restoring forces because they tend to restore
the string to its original position.

When you let go, the restoring forces
shown in Figure 11 cause the string to move
back toward its rest position. The forces
exerted by each side no longer cancel each
other. Instead they act together to pull the
string back toward its rest position.

ORIGINAL POSITION
Figure 11.

The harder a string is pulled initially, the
greater is the displacement of the string. The
greater the initial displacement, the greater
are the restoring forces; therefore, when it is
released, the string will be moving faster when
it reaches its original rest position (called the
equilibrium position).

Because the string is moving when it
reaches the equilibrium position, it moves on
past. As soon as the piece of string you
plucked has moved past the equilibrium posi-
tion, its adjacent parts begin to pull it back
toward the equilibrium position as shown in
Figure 12. The restoring forces, reversed in
direction compared to those shown in Figure
11, slow the string down and bring it to rest
with a displacement opposite to its initial
displacement. Then it moves again toward the
equilibrium position. These processes repeat
over and over, resulting in the back-and-forth
motion that we call vibration.

Figure 12,

Question 1. Suppose that you suspend a
weight on the end of a vertically held spring.
When the weight is displaced downward and
released, it will vibrate up and down. Describe
this vibration in terms of restoring forces.

Question 2. Describe how restoring forces
produce vibrations in some other physical
situations: the bottom of the tin can in the
“telephone” we discussed earlier, a ruler
clamped to the edge of a table, and a tine of a
tuning fork.

How does a vibrating string cause other
things near it to vibrate? If the string were
tied down at its ends to immovable support
points, then only the string would vibrate and
little sound would result. Suppose instead
that one end of the string is attached to a
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structure that can move; for example, a bridge
and sound board of a guitar. Then whenever
forces caused by tensions in displaced pieces
of string pull up or down on the bridge, it
moves a little in response to these forces, just
as pieces of the string do. The resulting
motion is an up-and-down vibration of the
bridge. The vibrating string excites the bridge
and sound board.

The ease with which the bridge and
sound board can be excited depends on two
factors which are common to all vibrating
structures.

The first factor which helps to determine
how a structure vibrates is its elasticity. An
object is elastic if when it is deformed (its
shape is changed) there are forces that tend to
restore the object to its original condition. A
putty ball is not elastic and does not vibrate
well. On the other hand, steel is highly elastic,
and a steel rod readily vibrates, in spite of the
fact that the steel rod is harder to deform. In
fact, steel, bronze, and nylon, the common
materials from which guitar strings are made,
are much more elastic than a more familiar
“elastic* material such as rubber.

Question 3. Which is more elastic, a strip of
lead or a strip of steel with the same
dimensions?

Small forces can cause displacements of
the sound board of a guitar from equilibrium.
The sound board is elastic enough that when
excited, it will vibrate quite a few times
before coming to rest.

A second important factor is the mass of
the vibrating structure. It is common experi-
ence that massive objects are hard to move. If
a large mass were attached to the sound board
of a guitar, it would be harder to make the
sound board move back and forth. The
vibration that would be easiest to excite
would then be different—less rapid and per-
haps involving less overall motion. Thus the
associated sound would be different, both in
pitch and loudness.

TRANSVERSE AND LONGITUDINAL
PULSES

So far we have talked only about the
vibrations of an object as a whole. What
happens if a disturbance is created at one
location in a large elastic object which is
capable of vibrating? You learned some
answers to this question when you pulled
aside a piece of the long spring near one end
and then released the part you were holding.

A neighboring piece of spring farther from the

end must follow the piece you move first.
When you let go, restoring forces cause the
piece you release to move back toward its
equilibrium position. Just as described above,
this piece overshoots its equilibrium position
and drags a nearby piece with it. Since parts
of the spring far from the disturbed end were
not initially displaced, those distant parts have
not yet discovered that anything is going on
at your end of the spring. However, as soon as
a piece of spring a short distance away from
the end is pulled past its equilibrium position,
it pulls a piece a little farther away from the
end after it, and this second piece in turn
drags a third piece somewhat farther from the
end after it, and so on. As time passes the
disturbance travels farther from the end
where it first started. The bump or shape that
moves along the spring is called a “wave
pulse.” Note that what moves from one end
to the other is this disturbance and not
chunks of material, as indicated in Figure 13.

What determines how fast this pulse
moves along the spring? That is, what deter-
mines the speed of the pulse? You probably
did not make enough observations to answer
this question. However, you may have noticed
that the speed has very little to do with how
far you pull the spring aside or how you hold
it before you release it. This observation
suggests that the speed depends on properties
of the spring itself.

You have seen that a sideways displace-
ment of the spring causes a disturbance to
travel along the spring. When the motions of
the pieces of spring are perpendicular to the
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Figure 13. The wave pulse moves along the spring, but the cloth marker only bounces up and down as the pulse

passes.

direction of motion of the wave disturbance
(as in this case), the moving disturbance is
called a transverse pulse. If several such
disturbances follow each other, and successive
pulses are separated by equal time intervals
and alternated in direction so that one is to
the left and the next one to the right as
shown in Figure 14, we have what is called a
tfransverse wave train, or simply a transverse
wave.

When several coils near one end of the
spring are bunched up, then released, another
kind of disturbance moves along the length of
the spring. In this case the forces that tend to
cause a displaced piece of spring to move back
toward its equilibrium position are directed

parallel to the length of the spring. Again, it
happens that the displaced piece passes
beyond its equilibrium position. This pro-
duces a bunching up of coils a short distance
away from the end. This compressed part of
the spring pushes on coils of the spring that
are still farther from the end. The result is
that the disturbance moves down the spring
away from the end where it started. Since the
vibration of matter (coils) in this case is along
the same direction as the motion of the
disturbance, we call this a longitudinal pulse.

The results you obtained when you
produced simultaneous transverse and longi-
tudinal pulses in the spring showed that the
speeds of these two pulses are not always the

DIRECTION OF MOTION OF
TRANSVERSE WAVE TRAIN

|

/\L

DIRECTION OF MOTION
OF PIECES OF SPRING

Figure 14.
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same, even when they occur in the same
spring.

Question 4. We have not tried to find out
what properties of the spring the speeds of
the longitudinal and transverse pulses depend
on. How can we conclude that the two speeds
must depend to some degree on different
properties of the spring?

As in the case of transverse pulses, it is
possible to produce a sequence of longitudinal
pulses that would be referred to as a longitud-
inal wave train.

Question 5. Roughly sketch the appearance
of a longitudinal wave train, as it would
appear moving along a spring like the one you
used in Experiment A-1.

VIBRATIONAL COUPLING

When one vibrating structure excites
another, we say there is vibrational coupling
between them. If the material of the second
structure vibrates weakly, even though the
first medium vibrates strongly, we say that
the coupling is weak. Whether the coupling is
weak or strong depends on the direction of
vibration of the original wave.

For example, the sound board of a guitar
is sufficiently elastic only in the direction
perpendicular to its surface. We cannot excite
vibration of the sound board by coupling the
bridge to a guitar string that is vibrating only
in the longitudinal direction. You also noted
that the coupling was better for a transverse
vibration in a direction perpendicular to the
surface of the sound board than for a trans-
verse vibration parallel to that surface, though
the latter did produce some sound. Much of
this sound resulted from unavoidable vibra-
tions of the string in a perpendicular direction
rather than from vibrations of the bridge in a
direction parallel to the surface of the sound
board.

How is the vibration of the sound board
coupled to your eardrum? Air itself vibrates

and this vibration produces the sensation we
describe as ‘“‘hearing.” The sound board is
coupled to the air near it. Whenever the
sound board moves up, it compresses the air
near it as indicated in Figure 15A. (This effect
is similar to that in which you bunched up
some coils of the long spring in Experiment
A-1.) This region of compressed air (called a
compression) then moves away from the
sound board.

When the sound board moves down, the
pressure of the air nearby is reduced, as
indicated in Figure 15B. This region of lower
pressure is called a rarefaction. When nearby
air rushes in to fill this rarefied region, a pulse
of rarefaction moves away from the sound
board. As shown in Figure 15C, a succession
of alternate compressions and rarefactions
constitutes a longitudinal wave train, called a
sound wave, that moves away from the sound
board in all directions. When these longitudi-
nal waves reach an eardrum, the alternating
pulses of higher and lower air pressure cause
the eardrum to vibrate just as the bottom of
the tin can was caused to vibrate by the wave
pulses in the wire. The eardrum is thus
coupled to the vibrations that occurred at the
sound board at a somewhat earlier time.

Question 6. Using a sketch, describe how
compressions and rarefactions of air moving
longitudinally from your mouth to the inside
of a tin-can telephone make the tin can
bottom vibrate.

LOUDNESS AND AMPLITUDE

If your eardrum does not vibrate, you
hear no sound. If the amplitude of eardrum
vibration is small, that is, if the eardrum
moves only a small distance away from its
equilibrium, or rest position, the sound you
hear is ‘‘soft,” or quiet. If the displacements
of the eardrum from equilibrium are larger,
then the sound heard is louder.

Question 7. What evidence can you cite from
your own experience which supports the
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statement that loud sounds result from large
initial displacements from equilibrium?

If you cause a large displacement of a
guitar string by plucking strongly, then that
point and all neighboring points vibrate (or
oscillate) with larger amplitudes than would
have resulted if you had plucked gently. As a
result of a large initial displacement, the
vibrations of the bridge and sound board are
more vigorous, and the amplitude of the
resulting sound wave that reaches your ear is
larger. This, in turn, causes your eardrum to
experience large displacements from equilib-
rium and the sound you hear is loud. The
larger the amplitude of vibration of a sound
source, the greater the loudness heard at some
fixed distance from the source.

FREQUENCY AND PITCH

To play a musical instrument, a musician
must be able to control, at will, the pitch of
the sounds that his instrument makes. For
stringed instruments, there are three ways to
control the pitch. The guitarist uses all three
of them.

First, you already know that increasing
the tension in a vibrating string raises the
pitch of the sound that it makes. One end of
each guitar string is wrapped around a peg.
The peg can be rotated by tuming a gear
system with your fingers. In this way the
tension, and hence the pitch, of each string
can be adjusted as desired. Making these
adjustments is referred to as tuning the guitar.

Why does increasing the tension in a
guitar string raise the pitch? The tension in
the string supplies the restoring forces that
cause the string to vibrate. The stronger the
force, the greater the rate at which the string
vibrates. If the string vibrates more rapidly,
the number of oscillations (vibrations) occur-
ring in each second increases. We call the
number of complete back-and-forth oscilla-
tions per second the frequency of oscillation
(vibration frequency). The frequency in-
creases as the tension increases. If it can be
established that the pitch also increases with
frequency, the observation that pitch in-
creases with tension will be easier to under-
stand. You will study the relationship
between pitch and frequency in Experiment
A-2.

13
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Another factor that determines the pitch
is the mass of the string. Massive strings make
lower-pitched sounds than less massive strings
of the same length under the same tension.
This fact is used to help the guitarist make
sounds with different pitches. The six strings
on a guitar have the same lengths, but
different thicknesses, and therefore different
masses. When the guitar is tuned, all the
strings are under approximately the same ten-
sion. The six strings, when plucked, make
sounds that have six different pitches. These
differences result from the different masses of
the strings.

Why does a massive string make a lower-
pitched sound than a less massive string? It is
more difficult to speed up an object with
large mass than one with small mass. It seems
reasonable that a given restoring force causes
a massive string to vibrate less rapidly (with
lower frequency) than a less massive string.
Again, you might suspect that pitch is related
to frequency of oscillation.

If there were no other way to change the
pitch of the sound made by a guitar string, a
guitarist could only play songs composed of
six particular notes. In fact, on instruments
like a piano, each string produces only one
note. However, there is a third way to
increase the pitch of a guitar string. This is
done by shortening the part of the string that
vibrates. Why does a shorter string produce a
higher pitch? You might be tempted to
answer that this is just another example of the
mass effect that we discussed earlier. That is,
you might say that since a short piece of a
given kind of string has less mass than a long
piece, the short piece is easier to move. But
this is not the correct answer. If you were to
compare two strings of the same mass but
different lengths, the shorter one would still
make a sound with a higher pitch. Why does a
shorter string produce a higher pitch? The
following experiment will help you answer
this question.



EXPERIMENT A-2. Harmonics and Modes of Oscillation

String musicians use a particular aspect
of string vibrations called harmonics. In this
experiment you will learn how to produce
harmonics in a vibrating string. You will also
observe these same harmonics in a long spring.

Place a strip of masking tape along the
fingerboard beneath the first string of the
guitar. On this tape, number the frets starting
at the nut end of the neck. Place another strip
of tape across all but the sixth (largest
diameter) string of the guitar. This will keep
the other strings from vibrating. The arrange-
ment is shown in Figure 16.

Pluck the guitar string at its midpoint
with your thumb.

1. Study the appearance of the vibrating
string; then sketch how the amplitude of
vibration varies from one end of the
string to the other. This dominant pat-
tern of vibration is called the funda-
mental or first harmonic. To learn more
about the first harmonic, we will look at
a larger vibrating system which simulates
the guitar string.

Horizontally suspend the spring provided

for you as shown in Figure 17 so that there is
~a distance of three or four meters between the
ends of the spring. The ends should be
clamped so that they cannot move, and the sag
at the center should be less than 30 cm.
Measure the length of the spring and, with

small pieces of tape, mark points that are at
distances of one-half, one-third, one-fourth,
and one-fifth of the length of the stretched
spring from one end.

Pull the spring aside at its midpoint.
Then release it.

2. How does the vibration pattern of the
spring compare with that of the guitar
string?

Practice swinging the spring in time with
its natural vibration. To do this push it to one
side then the other at a point near one end of
the spring, always keeping time with its
natural vibration rate. You should be able to
produce large vibrational motions (large amp-
litudes) by always pushing when the spring is
moving away from you and pulling back when
the spring changes direction and starts to
move back toward you again. The timing is
similar to pushing a child’s swing to make the
child swing higher. Supplying such a periodic
force to a vibrating system is called driving
the system.

3. Does the amplitude of the vibration
seem to affect the timing of the vibra-
tions (the frequency)?

Now go back to the guitar and pluck the
sixth string hard, then more softly.

Figure
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Figure 17.

4. Does the pitch change when the string is
plucked more softly?

To produce a different but related vibra-
tion, called the second harmonic, pluck the
guitar string at a point over the sound hole.
We will call this the normal position for
plucking a guitar string. Then lightly touch
the midpoint of the string with your finger.
The midpoint is usually located at the 12th
fret. Measure to make sure you are touching
the midpoint.

5. How does the pitch you hear after
touching the string compare with that
you heard before? (If you hear nothing
after touching the string, you probably
are touching the string with too much
force.)

6. You probably can’t see the variation in
string amplitude for the second harmon-
ic, but try to determine how the string is
vibrating by lightly touching the string at
various points after producing the sec-
ond harmonic.

We can also produce the second har-
monic in the spring. Pull the spring aside at a
point halfway between the midpoint and one
end, and release it. Then carefully catch and
stop the spring at its midpoint. Release the
spring immediately and observe the remaining
vibrations.

7. Sketch the variation of the amplitude of
the spring vibration along its length.

By pushing back and forth on the spring
at a point near one end in time with the
second harmonic, you can increase the ampli-
tude of this type of vibration. You must take
care that you introduce no amplitude at the
midpoint of the spring. Such a point, where
the amplitude of vibration is zero (where the
spring does not move), is called a node.

8. How does this vibration compare with
the second harmonic of the vibrating
guitar string?

9. Does changing the vibration amplitude
seem to change its frequency?

10. How does the frequency of the second
harmonic compare with that of the first
harmonic? (You can determine the fre-
quency by counting the number of times
you push the spring back and forth in a
certain time interval. The frequency is
the number of complete back-and-forth
motions per second.)

11. Does plucking the guitar hard or softly
to sound the second harmonic change
the pitch of the second harmonic?

To sound the third harmonic on the
guitar, pluck the sixth string at the normal



position, then lightly touch the string at a
point one-third the length of the string from
the nut. This point is at the seventh fret.

12. How does this pitch compare with that
of the first and second harmonics?

13. Can you produce this same pitch by
touching a point one-third the length
from the bridge end of the string?

As before, use the spring to more clearly
observe the third harmonic. Pull the spring
aside and release it. Stop its motion at a point
one-third its length from either end. Release
the spring and observe the resulting vibra-
tions.

-14. Sketch how the amplitude of the vibra-
tion varies along the length of the spring.

Drive the spring near its end as you have
done for the other two harmonics to produce
a large-amplitude third harmonic. Now ob-
serve the fwo nodes between the ends of the
spring. Where are they?

15. How does the frequency of this third
harmonic compare with those of the first
and second?

To produce the fourth harmonic, where
will you have to touch it after plucking? Try
it and see if it works. (You may have to pluck
the string at a point nearer the bridge to hear
the fourth harmonic.)

16. How does the pitch of the fourth har-
monic compare with those of the other
harmonics?

17. The fourth harmonic can be produced
by touching the string at a different
point. Where is this point? Try it to see
if it works.

While the fourth harmonic is sounding,
touch the midpoint of the string.

18. Can you still hear the fourth harmonic?
Try the same thing with the third
harmonic.

To produce the fourth harmonic in the
spring, pull it aside near one end and stop it at
the correct point. (Where is this point?) Re-
lease the spring and observe its vibrations.

19. Sketch how the amplitude of the vibra-
tion varies along the length of the spring.

20. How do the frequencies of the four
harmonics compare?

Produce the fifth harmonic in the guitar
string.

21. How does the resulting pitch compare
with the pitch of the other harmonics?

22. Can you produce the fifth harmonic by
touching points that are two-fifths,
three-fifths, or four-fifths the length of
the string from the nut?

Produce the fifth harmonic in the spring.
23. Sketch the resulting vibration.

Drive this fifth harmonic to large ampli-
tude as you have done before.

24. How does the frequency of this vibration
compare with that of the previous
harmonic?

25. How would you produce the sixth,
seventh, or any other harmonic in the
guitar string?

26. Do you think the position at which the
string is plucked affects the number of
harmonics generated and their ampli-
tudes?

Try producing the second harmonic after
plucking the string at various points.

17
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27. Did you pluck at any points and find
that you could not produce the second
harmonic? If so, where were these
points?

Try producing the third harmonic after
plucking at various points.

28. Did you pluck at any points and find
that you could not produce the third
harmonic? If so, where were these
points?

SUMMARY OF THE RESULTS
OF EXPERIMENT A-2

You have observed the appearance of a
guitar string sounding its lowest-pitched
sound. A multi-exposure photograph of the
string made at very short time intervals might
look like Figure 18, with each line being a
different position of the string. We call the
resulting tone the fundamental or first har-
monic. This is also the pattern of transverse
vibrations in a spring when it is vibrating at its
lowest possible frequency.

ANTINODE
NODE i NODE

/ \

Figure 18.

When a guitar string vibrates so as to
produce the pattern shown in Figure 19, the
pitch of sound emitted raises to an octave
above the fundamental. We call this higher
pitch the second harmonic. When a spring
vibrates in this pattern, its frequency of
vibration is two times its lowest (funda-
mental) frequency. Thus, a one-octave in-
crease occurs when the frequency of vibration
is doubled.

Figure 19.

We call a point where no vibration
occurs a node. The points of maximum
vibration amplitude are called antinodes.

Question 8. Where are nodes located in the
string vibration shown in Figure 19?7 Where
are the antinodes located? How many of each
are there?

Question 9. If Figures 18 and 19 refer to the
same guitar string, how does the distance
between nodes in Figure 18 compare with the
distance between nodes in Figure 19? How do
the frequencies compare?

Whenever the pattern of vibration on a
guitar string changes in such a way as to add
another antinode, and thus another node, the
pitch of the sound becomes higher. When a
spring vibrates in a pattern that has three
antinodes, the frequency of vibration is three
times as great as the lowest possible fre-
quency. We would conclude that a guitar
string does the same thing.

Question 10. A string vibrates in a pattern
which has seven antinodes. Sketch a multi-
exposure ‘“photograph” of this pattern. How
much higher is the frequency of this oscilla-
tion than when the string vibrates at its
fundamental? How many nodes are there?

The pitch of a sound is determined by
the frequency of the vibration that produces
the sound. Also, there is a relationship be-

tween the frequency of vibration of a string

and the distance between nodes. When the
distance between nodes is halved, the fre-
quency is doubled.

When a guitar string is plucked at the
normal position, or at almost any randomly
chosen point, many harmonics are produced.
However, a harmonic that corresponds to a



pattern of vibration with a node at the
excitation point cannot be produced. For ex-
ample, you cannot produce the second har-
monic by plucking the string at its midpoint.

The quality of sound from a guitar varies
with the point at which the string is plucked.
This suggests that the quality of a sound is
related to the harmonic content of the sound.
That is, whether you hear a rich sound or a

tinny sound depends on the number of
harmonics present and the amplitude of each.
In music theory, the word “harmonic” refers
to a tone made up of all of the complex
vibrations which are left after a string is
plucked and then touched at some point. In
physics, “harmonic” refers to a single simple
vibration. You will study this aspect of
harmonics more carefully later in the module.
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NODE-TO-NODE DISTANCES AND
FREQUENCIES OF OSCILLATION

Experiment A-2 provided evidence that a
different frequency is associated with each
simple pattern of vibration. You saw the
similarity between the pattern on a guitar
string that had been plucked at its midpoint
and a long spring vibrating so that only its
ends are nodes. When the guitar string is
plucked at some other point, such as the

normal position, almost the same basic pat- .

tern of vibration is visible. However, if the
string is plucked at its normal position and
then touched at the midpoint, vibration con-
tinues but the pattern changes to that assoc-
iated with the second harmonic (Figure 19).
The pitch increases abruptly when this change
takes place. The new pitch is described by
musicians as being one octave higher.

When the long spring is vibrating and it is
then held at its midpoint so as to force the
midpoint to become a node, the two halves of
the spring may continue to vibrate in a
pattern that looks much like that shown in
Figure 19. The frequency of this new pattern
is double the previous one. The conclusion is
that spring (and string) patterns with more
antinodes vibrate at higher frequencies and
the strings produce sounds of higher pitches.

You also noted that for each higher
harmonic, one more node is added and, for a
given harmonic, the nodes are always equal
distances apart. Why are these patterns pos-
sible and why do we not observe more
irregular patterns? Also, why does the fre-
quency increase when the node-to-node dis-
tance decreases? These are questions we will
seek to answer in later sections of this
module.

Finally, you observed that the particular
mixture of harmonics excited by plucking a
string depends on the details of sow the string
is plucked. Can we predict the mixture that
will result from any particular position of the
string just before it is released? We cannot
give a complete answer to this question now,
but we will come back to it later in the
module. However, some aspects of the situa-
tion are clear. If you want to produce the

second harmonic, or the fourth harmonic, or
any even-numbered harmonic, you must not
cause the midpoint to move, because the
midpoint is a node for even harmonics. If you
want to produce the third harmonic, you
must be sure that the points one-third of the
length away from each end are at rest, etc.

THE QUALITY OF SOUND AND
PATTERNS OF VIBRATION

Associated with each pattern of vibra-
tion of a string—or any vibrating structure—is
a particular pitch. Depending on how the
vibration is started, the overall pattern may be
complex in the sense that it includes a
mixture of simple patterns (harmonics). When
this occurs, the pitch that the human ear
recognizes is the pitch associated with the
lowest harmonic that is present to a signifi-
cant degree. However, the quality of the
sound is determined by the particular har-
monics present, depending both on the num-
ber of harmonics that are included and on the
amplitudes of these harmonics.

Why does strumming the guitar at differ-
ent places produce sounds of different
quality? It is because the particular mixture
of patterns present in a vibrating string
depends on how the vibration is produced.
Also, the difference in harmonic content
accounts for the different sounds produced
by different instruments when playing the
same tones.

Question 11. What harmonics are not pro-
duced when a string is strummed at a point
one-quarter of the way from one fixed end?

If the presence and absence of harmonics
determine the quality of a sound, why does a
note stimulated by a pick sound different
from the same note stimulated by plucking
with your fingers? The shape of the string
when it is first released after being displaced
determines the amplitudes of the various
harmonics that are present. The shape of a
string that is pushed aside by a rounded finger
is different than the shape of a string that is
pushed aside by a point pick.



You have seen that the qualities of the
sounds made by a guitar when the sound hole
is closed and when it is open are different, at
least for low-pitched sounds. What does the
sound hole have to do with the vibration
patterns of the guitar? A vibrating structure
causes other structures with which it is
coupled to vibrate. The air inside the body of
the guitar is caused to vibrate by the sound
board and, in turn, helps the sound board to
vibrate. However, the simple vibration pat-
tems for one structure (like a guitar string)
may be quite different from those for a
nearby structure (like a sound board) forced
to vibrate at the same frequency. When this
occurs, vibrations in the first structure do not
excite large-amplitude vibrations in the sec-
‘ond structure.

It is the job of a guitar designer to make
sure that all the principal structures—the
strings, the sound board, and the air in the
sound box—vibrate at the same frequencies.
While this goal is partially achieved in every
guitar, perfect matching at all frequencies is
not possible. For example, the air inside the
body of the guitar vibrates more easily at low
frequencies than at high frequencies. Thus the
quality of low-pitched sounds is influenced to
a greater degree by the vibrations of the air in
the sound box. When the sound hole is closed,
the coupling of vibrations of air inside the
sound box to the air outside is destroyed. The
mixture of patterns producing the sound is
altered, and the quality of the sound changes.

THE SHAPE OF THE SOUND BOARD
AND THE LOCATION OF THE BRIDGE

We have already mentioned the influence
of the size of a vibrating structure on the
pitch of the sound it produces. We also
discussed the influence of the method of
exciting a vibration on the mixture of simple
patterns of vibration that are stimulated and
hence on the quality of the sound. Since the
sound board is the guitar structure that is
coupled most strongly to the air, which in turn
transmits sound vibrations to our eardrums, it
is important to understand what the sound
board does.

The sound board, like every elastic struc-
ture, is capable of vibrating. A particular
sound board vibrates in various patterns that
are determined by its shape and construction.
As for strings, there are nodes in these
patterns. However, instead of nodes at single
points, as in the string, there are nodal lines
and/or points along which there is no oscilla-
tion. For example, the outer edge of the
sound board is not very free to oscillate. So it
forms a nodal line.

A particular structure vibrates easily
only at certain frequencies that are deter-
mined by the size and shape of the structure.
You may then wonder how the sound board,
which does not change its size, can amplify all
the different pitches produced by the strings.
(These pitches vary from string to string and
change as the vibrating length of each string is
changed.) Any elastic structure can be forced
to vibrate at any frequency. This is true for
frequencies different from those at which it
vibrates when abruptly excited (for example,
by being plucked) and left to vibrate natur-
ally. However, the amplitudes of forced vibra-
tions are very small at frequencies thst are
greatly different from the ‘““natural” frequen-
cies of the structure. The sound board must
be stimulated at vibration frequencies that are
not greatly different from those at which it
would vibrate naturally.

The location of the bridge is chosen so
that the vibrations of the strings are most
easily transmitted to the sound board.

SUMMARY

In this section you have learned that
sound is produced by the vibration of mate-
rial objects. In a guitar, the ultimate source of
the sound is the vibrating string. The string
transmits its transverse vibrations through the
bridge to the sound board, which transfers the
sound to the air.

The larger the amplitude of vibration,
the louder is the sound produced. The pitch
of the sound from an open guitar string
depends on the length of the string, the
tension in the string, and the mass per unit
length of the string. The pitch may be
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increased by making the string shorter, by
increasing the tension, or by decreasing the
mass per unit length. The quality of the guitar
sound (rich, hollow, tinny, etc.) depends on
how the string is set into vibration.

You learned that when an object is
displaced from equilibrium, restoring forces in
the material cause vibrations by producing an
overshoot as the object returns. Any object
with restoring forces is said to be elastic or to
have elasticity. Also required for vibration is
flexibility, which is the ability to bend or
distort. An object can be elastic without being
very flexible or flexible without being very
elastic, but both properties are required for
ease of vibration. The sound board of a guitar
is elastic and flexible, so that it is easily set
into vibration by the string to produce longi-
tudinal waves in the air which your ears
detect as sound.

You have seen that a string fixed at both
ends vibrates in various basic patterns. These
patterns are characterized by nodes (points
where the string is not moving) and antinodes
(points where the string is moving the most).
The simplest such pattern, with a node at
each end and an antinode at the center only,

is called the fundamental. Basic patterns with
more nodes and antinodes (still always with a
node at each end) are called harmonics, and
they are numbered. The harmonic number is
the same as the number of antinodes present.
Several such basic patterns, or harmonics, are
usually present at the same time, giving rise to
a more complex vibration. This is usually the
case on a guitar string. A harmonic may be
removed from a complex vibration on a string
by touching the string lightly at the position
of an antinode of that harmonic.

The fundamental has the lowest fre-
quency of vibration for a particular string.
Each harmonic has a vibration frequency that
is an integral multiple of the fundamental.
The frequency of the second harmonic is
twice that of the fundamental. (In musical
language, the pitch is defined to be one octave
higher.) The third harmonic is three times the
fundamental frequency, etc.

Finally, you saw that the pitch of the
sound from a guitar string is determined by
the lowest frequency present (the funda-
mental if it hasn’t been removed). The pro-
portions of the various harmonics that are
present determine the quality of the sound.



GOALS FOR SECTION B

The following goals state what you
should be able to do after you have com-
pleted this section of the module. These goals
should be studied carefully as you proceed
through the module and as you prepare for
the post-test. The example which follows each
goal is a test item which fits the goal. When
you can correctly respond to any item like
the one given, you will know that you have
met that goal. Answers appear immediately
following these goals.

1. Goal: Know the mathematical relation-
ship between fundamental frequency of
a vibrating string and tension, length,
and mass.

Item: If you start with a tuned guitar
string and then turn the tuning peg until
the tension is tripled, by what factor
does the fundamental frequency change?

2. Goal: Know the definitions of power
and intensity.

Item: A sound wave enters a square
window 1.5 m on a side, with a power of
3X 10 W spread evenly over the sur-
face. What is the sound intensity at the
window?

3. Goal: Understand the concept of inten-
sity level.

Item: The background noise in a room
has an intensity level of 20 dB. If that
noise level doubles in intensity, what is
the new intensity level?

Goal: Understand the whole-population
hearing ability curves (Figure 27).

Item: If “normal” hearing is defined by
the bottom curve in Figure 27, what
percent of the population has impaired
(worse than normal) hearing?

Goal: Understand the concept of loud-
ness level.

Item: What intensity level of sound is
required at 200 Hz to produce a loud-
ness level of 30 phons?

Answers to Items Accompanying
Previous Goals

1.

2.

1.73
1.33 X 107 W/m?
23 dB

99%

47 dB
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SECTION B

QUALITATIVE OBSERVATIONS SUGGEST
QUANTITATIVE EXPERIMENTS

In Section A you made observations of a
guitar and other vibrating objects. In this way
you discovered many things about guitar
behavior. For example, the frequencies of
oscillation of the strings determine the pitches
of the sounds made by a guitar. These
frequencies can be increased by increasing the
tension in the strings, by decreasing the mass
of the strings, or by decreasing the length of
the strings. While these statements contain a
substantial amount of useful information,
they are qualitative in nature. You did not
discover in Section A how much frequency
changes for measured changes in string ten-
sion, mass, and length. You can gain more
insight into guitar behavior, and the operation
of other vibrating systems as well, by per-
forming quantitative experiments in order to
discover the mathematical relationship among
all the factors that influence frequency.

Then the first goal is to find an equation
relating frequency (f), tension (7)), mass (m),
and length (L) of a string; the string equation.
Your earlier experiments were useful because
they helped you to identify the important
factors, or variables. However, you were not
trying to measure things quantitatively at that
time. You did not worry about the values of
the variables, or how much they changed
from one observation to another. You even
allowed several variables to change simulta-
neously. That is, you did not attempt to
control the variables.

Now is the time to be more careful and
more systematic. In this experiment you can

change any one of the three quantities (ten-
sion, mass, and length) without changing the
other two. We call such quantities which can
be varied independently of each other inde-
pendent variables. Since the string frequency
depends on the values of the independent
variables, we call it a dependent variable.

If we want to know how one of these
independent variables affects the dependent
variable, we must study its effect indepen-
dently of the other two. For example, to
learn how tension affects frequency, one does
experiments in which the tension is varied and
the corresponding changes in frequency are
measured, while the string mass and the string
length are not allowed to change.

This means that to determine completely
the string equation, one must perform three
different experiments. In each case, it is
necessary to measure the values of the inde-
pendent variables that don’t change, several
different values of the independent variable
that do change, and the frequency that
corresponds to each of these values. This is
then a controlled, quantitative experiment.
The result will be an empirical equation, an
equation determined by experiment. Later we
will try to develop a theory for string vibra-
tions. This theory will describe the fairly
complex behavior of the vibrating string in
terms of basic concepts that underlie many
other complex situations as well. From this
theory we may be able to derive a theoretical
equation that relates the independent and
dependent variables. If our theory is success-
ful, the empirical equation and the theoretical
equation will agree.

You should now do Experiment B-1.



EXPERIMENT B-1. The String Equation

In this experiment you will determine
how the pitch, or fundamental frequency, of
a vibrating string varies with the length, mass,
and tension of the string. You will find work
sheets for this experiment at the end of the
module.

Start with a tuned guitar and a calibrated
audio oscillator. (An audio oscillator is an
electronic device that produces electric wave
trains at any desired frequency over the range
that includes audible sound. When the output
of the oscillator is connected to a speaker,
you can hear a pure tone. That is, you hear a
single frequency with no harmonics.) Pluck
the midpoint of the sixth (low-E) string of the
guitar and change the frequency of the
oscillator tone until the pitches of both
sounds are the same. You must determine
when they are the same by ear. An average
person can match pure tones to those pro-
duced on a guitar with an accuracy of better
than 0.3%. However, it is particularly difficult
to tune a tone which is rich in harmonic
content to a pure tone. Thus, be sure to pluck
the midpoint of the string, so as to emphasize
the first harmonic.

1. Read the frequency of the audio oscilla-
tor when you think the match in pitches.
is best. Record this frequency in the first
column of Table 1. (The unit of fre-
quency is called the hertz [Hz]; one
hertz equals one oscillation per second.
One kilohertz [kHz] equals 1000 Hz.)

Now, the first part of this experiment is
to determine the dependence of frequency on
mass per unit length of the string. To do so
you will hold the tension and the vibrating
length constant.

Remove the end of the string from its
tuning peg and attach it to the spring scale as
shown in Figure 20. Hold the guitar in place
by using straps and clamps as shown. Put the
string under tension by pulling on the scale
and pluck the string at the midpoint of the
part that vibrates. Make certain the string is
pulled downward over the nut of the guitar.
This insures that the vibrating length of string
is the same as before (from the bridge to the
nut). Pull on the string until its frequency
again matches the oscillator frequency.

2. The reading of the spring scale is the
tension in the string. Record the tension
(in newtons, N) necessary to produce
this oscillation frequency at the top of
Table 1.

3. Remove the string from the guitar. Mea-
sure and record its mass and total length
in columns 2 and 3 of Table 1. Express
the mass in kilograms (kg) and the length
in meters (m).

4. Divide the string mass by its length to
calculate the mass per unit length, and
record this result in column 4 of Table 1.
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Figure 20.
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5. Measure the distance from the nut to the
place where the string rests on the
bridge. This is the length of the part of
the string which is vibrating. Record this
value L at the top of Table 1.

6. Multiply the length L by the value of
mass per unit length from column 4 and
record the resulting mass m in column 5
of Table 1. This is the mass of that
portion of the string which vibrates.

Remove the next (fifth) string from its
tuning peg and attach it to the spring scale.
Pull on the scale until you have the same
tension as for the sixth string. Again be sure
that the string is pulled tight against the nut.
(You will recall that the tension is about the
same for each string of a tuned guitar.) Match
the oscillator frequency to that of the string.

7.  Record the oscillator (string) frequency
in Table 1.

8 Remove the string and measure and
record its mass and total length.

9. Calculate the mass per unit length. Re-
cord this value in Table 1.

10. Calculate the mass m that vibrates using
the value of L from step 5 and the mass
per unit length from step 9.

Repeat this procedure for each of the
remaining strings, keeping the tension the
same in each case.

You now have data for the relationship
of frequency to mass, with length and tension
held constant. In the next section of the
experiment you will keep the string mass and
length constant and vary the tension.

Clamp a pulley to the edge of the table
and attach a 1-kg weight hanger to the end of
the sixth string, as shown in Figure 21. Be
sure that the string presses firmly against the
nut, so that the part of the string that vibrates
is the normal length. In Table 2 record the
mass of the part of the string which vibrates
(from the 5th column of Table 1), and the
length L of the part of the string which

PULLEY
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Figure 21.

vibrates. Also record the mass per unit length
of this string.

Match the frequency of the string with
that of the audio oscillator.

11. Record this frequency in Table 2.

In this case, the tension in the string is
equal to the weight of the hanging mass.
Calculate the tension (in newtons) by multi-
plying the mass (in kilograms) on the end of
the string by the acceleration of gravity
(9.8 m/sz). That is, for a 1-kg hanging mass,
the tension is 9.8 N.

12. Record this tension in Table 2.

Repeat this procedure for total masses
of 2, 3, 4, 5, and 6 kg pulling on the string.
(Remember to include the mass of the
holder.)

13. Record your data in Table 2.

You now have data relating the fre-
quency of string vibration to tension, at
constant string length and mass. The remain-
ing unknown dependence is between fre-
quency and length. It is not convenient to
change the length and keep the vibrating mass
constant. Instead, you will vary the length
and keep the mass per unit length constant.
You must remember to take this into account
later.

Adjust one of the guitar strings until it is
approximately in tune. Record the approxi-



mate string tension and the mass per unit
length at the top of Table 3. Match the
frequency of the oscillator to that of the
string.

14. Record the frequency in Table 3.

To change the length of the vibrating
string, place the special clamp you have been
provided (called a capo) on the neck so that
the string is held tightly against the first fret.
The capo should be placed close to the fret on
the side nearer the nut. The new vibrating
length is from the bridge to the first fret.

15. For the capo positioned near five differ-
ent frets, measure and record, in Table
3, the fundamental frequency of vibra-
tion and the vibrating length of the
string.

To analyze the data, we will look at the
relationship of frequency to only one of the
independent variables—mass, tension, or
length—at a time. Because you really held
mass per unit length, not mass, constant in
the third part of the experiment, and because
of the relationship between mass and mass per
unit length, you can regard mass per unit
length, tension, and length as the three
independent variables.

The method you will use to analyze the
data is to graph frequency versus the inde-
pendent variables, looking for straight-line
(linear) relationships. Generally, these rela-
tionships will not be linear and you will have
to look for other relationships, such as the
frequency versus the reciprocal or square root
of a quantity. For example, suppose you had
the relationship between two quantities x and
y shown in the table. In Figure 22, y is
graphed versus x, \/37 and 1/\/; Of the three,
Figure 22C exhibits the only linear relation-
ship. Thus one can write y =g + b/\/;, where
@ and b are constants. In this case y=
3+ 12A/x.

Using this technique, there are many
combinations possible so, to save you time, we
shall suggest which quantities to graph.

We will consider first the relation be-
tween mass per unit length and frequency.

X y
| 15
2 .5
3 |99
4 9
yl._
6 —
14 —
12 —
10 —
L1 1
o) | 2 3 4 5 «x

I 1.2 1.4 16 1.8 2.0 VX

12 —

0 —

| 1~ | | |

O 0.20.406 0.8 1.0 WX
Figure 22A, B, and C.

27



28

Examine the frequency and mass/length
(m/L) columns of Table 1. Does the frequency
increase as m/L increases? If so, you might
suspect a direct proportion as the relation-
ship. If the frequency increases as m/L de-
creases, you might suspect an inverse propor-
tion as the relationship.

16. Does the frequency increase or decrease
as the mass per unit length increases?

Plot a graph of frequency (f) on the
vertical axis versus the reciprocal of mass/
length (1 + mass/length) on the horizontal
axis.

17. Does this graph appear to be a straight
line?

Plot a graph of frequency on the vertical

axis and the reciprocal of\/m/L, 13/m/L, on

the horizontal axis.

18. Which of your two graphs is most nearly
a straight line?

19. From the linear graph, write an equation
which summarizes the relationship be-
tween frequency (f) and mass per unit
length (m/L).

Now examine the frequency and tension
columns in Table 2. Plot a graph of frequency
on the vertical axis versus tension on the
horizontal axis.

20. Does the frequency increase or decrease
as tension increases? Does this graph
appear to be a straight line?

Plot a graph of frequency on the vertical
axis and the square root of tension (\/7') on
the horizontal axis.

21. Which of these two graphs is most nearly
a straight line?

22. From the linear graph, write an equation
which summarizes the relationship be-
tween frequency and tension.

Now examine Table 3. Plot a graph of
frequency on the vertical axis and length on
the horizontal axis.

23. Does the frequency increase or decrease
as the length increases?

Plot a graph of frequency on the vertical
axis and the reciprocal of length on the
horizontal axis.

24. Does this relationship appear linear?

25. Do you think some other relationship
would be more nearly linear? If so, try
it.

26. From the appropriate graph, write an
equation which summarizes the relation-
ship between frequency and length.

27. You now have relationships between
frequency and mass per unit length,
frequency and tension, and frequency
and length. Try to express one relation-
ship involving frequency, mass per unit
length, tension, and length, and therefore
one equation relating f, m/L, T, and L.



DISCUSSION OF EXPERIMENT B-1

You discovered in Experiment A-1 that
the more massive strings on the guitar pro-
duce lower-pitched sounds, and in Experi-
ment A-2 that low-pitched sounds are pro-
duced when the frequency of oscillation is
low. You were probably not surprised when
Experiment B-1 revealed that the frequency
of the sound produced by the various strings
on a guitar decreases as the mass of the
vibrating string increases. Since it is more
convenient to keep mass per unit length
constant instead of mass, we regard mass per
unit length as the independent variable. That
presents no problem so long as the length of
the vibrating string is kept constant. You again
saw that frequency decreases when mass per
unit length, increases.

What about your results? The fact that
the graph of frequency and the reciprocal of
the square root of the mass per unit length is
a straight line through the origin means that
the frequency is proportional to the recipro-
cal square root of mass per unit length. Saying
it another way, frequency is inversely propor-
tional to the square root of the mass per unit
length when the tension and string length are
constant. This proportionality relationship
can be written in equation form as follows:

f= (D

The proportionality constant 4 is the slope of
the straight-line graph of f versus 1A/m/L.
The value of A may depend on anything held
constant during measurements of frequency
and mass per unit length. Thus A might
depend on the tension in the string and on
the length of the vibrating string.

You discovered in Experiment A-1 that
the pitch (and hence the frequency) of a
guitar sound increases as the tension in the
vibrating string increases. Your graph of fre-
quency and the square root of the tension
indicates that the frequency is proportional to
the square root of the tension when the mass
and length of the vibrating string are constant.
Mathematically, this result can be expressed
as follows:

f=BT )

The constant B is equal to the slope of your
graph of f versus \/7 It might depend on
anything held constant in this part of the
experiment (the mass and/or the length).
Finally, you noted that when you
shorten the length of a vibrating string its
pitch, and hence its frequency of vibration,
increases. If the tension and mass per unit
length are constant, you found that the
frequency is inversely proportional to the
length. This can be expressed as follows:

3)

>0

The constant C is the slope of your graph of f
versus L. It might depend on anything held
constant during this part of the experiment
(tension and mass per unit length).

Now we are faced with an interesting
and difficult problem. We must find a single
equation that is consistent with Equations
(1), (2), and (3), and thus expresses correctly
all of your experimental results. You at-
tempted to solve this problem when you
answered the last item of the experiment. The
mathematics needed to find such an equation
in a rigorous and logical way are beyond the
scope of this module. We will instead state the
equation and show that it works. The correct

equation is
T
=1/ @

where K is a constant.

Let’s compare Equation (4) with the
previous equations to see if it satisfies all the
requirements.

Substituting the right-hand side of Equa-
tion (1) for f in Equation (4), we get

A K T
m/L L+ (m/L)

Multiplying both sides of this equation by

™

vm/L, we have
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A= Zﬁ (5)

This means that 4 is constant so long as
tension and length are constant. It also means
that the slope of the graph of frequency and
mass per unit length is larger for larger values
of the constant and tension. The slope is
smaller for larger constant lengths.

By similar algebraic steps, you can find
that

K 1
AT ©
C=K T @)

(m/L)

Problem 1. By carrying out the necessary
algebraic steps, show that Equations (6) and
(7) are correct.

In each case we see that the constant of
proportionality depends on the independent
variables that were held constant during the
appropriate part of the experiment. The
constant K can be calculated from any one of
the Equations (5), (6), or (7). If you calculate
K from more than one of these equations,
you can check the consistency of various
parts of the experiment.

Problem 2. Go back to the data of Experi-
ment B-1 and use it to calculate values of K
for each of Equations (5), (6), and (7). How
do these values of K compare with each
other?

We can now rewrite Equation (4) in a
simpler form which may be easier to under-
stand:

— (8)

If the tension is increased, it increases the
restoring forces that pull pieces of the string
back and forth. This in turn causes the string

to vibrate more rapidly. From Equation (8)
you now know Akow much the frequency
increases with increasing tension.

If the mass of the vibrating string is
large, the string vibrates more slowly. Now
you know how much the frequency decreases
with increasing string mass.

The closer together the nodes of a simple
vibration pattern are, the higher is the fre-
quency of oscillation of the antinodes be-
tween the nodes. You observed this directly
in Experiment A-2. Now you know quantita-
tively how frequency varies as the length of
the vibrating string changes. But we have not
yet explained why this happens.

Question 12. When you tighten a string on a
guitar, which of the variables 7, m, and L do
you change? When you hold a string against a
fret, which variables do you change?

Problem 3. Suppose that you decide to re-
place steel guitar strings with nylon strings on
a particular guitar. The strings are to be tuned
to the usual frequencies. If the mass per unit
length of each nylon string is one-fourth that
of the corresponding steel string, must the
tension in the nylon strings be greater or
smaller? By what factor must the tension be
changed?

LOUDNESS, AMPLITUDE, AND
FREQUENCY

By now you should understand how the
guitar produces sound. The guitar strings, the
sound board, and the air in the sound box
vibrate. The air outside the sound box is, in
turn, set into vibration. This sound is trans-
mitted through the air to the ear in the form
of sound waves. But what happens at the ear?
We do not wish to delve deeply into the
workings of this amazingly sensitive and
complex organ. We shall just note that the
sound wave travels through the ear canal to
the eardrum, causing it to vibrate with the
same frequency as the sound wave. This
vibration is passed on to the small bones in
the middle ear and eventually to the fluid and



nerve endings in the inner ear. (See Figure 23).
Here the vibrations are transformed into
electrical nerve impulses which travel to the
brain where they are interpreted as sound.
The loudness of the sound sensation
caused by a vibrating structure, such as a
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Figure 23.

tuning fork, depends primarily on the sound-
wave amplitude. However, since your ear is
not equally sensitive to all frequencies, the
loudness is affected by the frequency.

FREQUENCY RESPONSE OF THE GUITAR

In Section A we discussed the fact that
structures such as the sound board of a guitar
or the air inside the sound box vibrate
naturally at certain frequencies. These
“natural frequencies” depend on the size,
shape, elasticity, and mass of the vibrating
structures. Such structures can be driven so
that they vibrate at other frequencies. How-
ever, the amplitude of vibration of the struc-
ture is relatively small when driven at fre-
quencies that are different from a frequency
at which the structure vibrates naturally. If a
structure is driven at or near one of its
natural frequencies, the amplitude of response
is large. This large response at the natural
frequencies is called resonance, and the fre-
quencies at which it occurs are called resonant
frequencies.

To learn more about the loudness prop-
erties of sound you should now do Experi-
ment B-2.
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EXPERIMENT B-2. Loudness and Resonance

PART I: Loudness

For this part of the experiment you are
provided with an audio oscillator connected
to a speaker. The audio oscillator will provide
tones with frequencies you can vary over a
wide range, including most of the audible
range. You can also adjust the amplitude (and
therefore the loudness) of the tones.

You can “see” the tones by using a
microphone, which converts the sound waves
into an electrical signal. The electrical signal
from the microphone may be fed into an
oscilloscope and displayed on the oscilloscope
screen. The frequency of the wave on the
oscilloscope screen is the same as that of the
sound wave, and the amplitude is propor-
tional to the sound-wave amplitude. This
arrangement is shown in Figure 24.

OSCILLOSCOPE

SPEAKER

MICROPHONE
Figure 24.

Turn on the system and change the
frequency of the audio oscillator slowly from
its lowest frequency to 20 kHz while listening
to the speaker. This operation is called a
frequency sweep. Maintain a fixed position
near the microphone as you listen to the
frequency sweep.

1. How does the pitch of the sound change
as the oscillator frequency increases?

The actual tones you hear during the
sweep are affected by the properties of the
speaker and the oscillator, as well as by the
characteristics of your own hearing.

Now sweep slowly from the lowest
frequency available to your upper limit. Hold
the amplitude as constant as you can by
looking at the oscilloscope screen and using
the amplitude control on the audio oscillator.

2. When listening to a constant-amplitude
wave, what frequency sounds the loud-
est? Sweep through the frequencies
several times, and estimate your error in
this observation.

Set the oscillator at 500 Hz. Slowly
increase the amplitude of the sound wave and
listen.

3. Does the loudness depend on sound-
wave amplitude at this single frequency?
Does the same effect hold for other
frequencies? How does the pitch depend
on sound-wave amplitude?

Set the oscillator to 3 kHz. Connect
one terminal of a decade resistor to one of the
terminals of the oscillator. Then to the other
end of the resistor, connect one terminal of a
push-button switch. Finally, connect the
other terminal of the switch to the other
terminal of the oscillator. With this arrange-
ment you can change the amplitude of the
signal, and thus the intensity of sound enter-
ing your ear, by pushing the button of the
switch. This is because some of the electrical
energy of the oscillator is consumed in the
decade resistor. You can get different ampli-
tudes just by adjusting the decade resistance.
Although this is a crude method of attenuat-
ing the signal, over the range of amplitudes
used, there will be no damage either to the



oscillator or to the resistor. Also, there will be
no appreciable distortion.

Set the decade resistor at 1 ohm and
turn on the oscillator. Open and close the
switch. (It is best to have someone else
opening and closing the switch while you do
not watch.) Set the amplitude as low as
possible, but still loud enough that you can
clearly hear the tones. Again, be sure that you
remain at the same position near the micro-
phone as you listen to the tones.

4. Can you detect a difference in loudness
when the switch is opened and closed?

While the switch is being alternately
opened and closed, adjust the decade resistor
until you can just detect a difference in
loudness; that is, to the point where, if you
increase the resistance further, you no longer
can hear any difference in loudness.

5. Record the amplitudes from the oscilio-
scope for the open and closed positions
of the switch. (We assume that the
amplitude of the input signal to the
speaker is proportional to the amplitude
of the sound which you hear.)

6. Square each of the two values of ampli-
tude, and record these as measures of
intensity. The intensity, defined as the
energy carried by the wave per unit area
per unit time, is proportional to the
square of the amplitude.

To check the results of step 5, you may
want to start with the highest decade resis-
tance, where you cannot hear a loudness
difference, and, as the switch is opened and
closed, adjust the resistance down until you
can first hear a difference in loudness.

Next set the amplitude of the oscillator
to a high value where the tone is loud but
not uncomfortable or too loud for others in
the room.

7. Repeat steps 4 to 6 for this louder
sound.

8. How does the intensity difference re-
quired for the smallest perceptible in-
crease in loudness for the low-level
sound at 3 kHz compare with the differ-
ence of intensities required for the
louder sound at the same frequency?

9. How does the intensity ratio for the
low-level sounds compare with the ratio
for the louder sounds?

10. Set the oscillator to 400 Hz and repeat
steps 4, 5, and 6. (Remember to set the
initial amplitude to the lowest setting
where you can still hear clearly the tones.)

11. How does the intensity difference re-
quired for the smallest perceptible in-
" crease in loudness for 3 kHz compare
with the intensity difference at 400 Hz?

12. How does the ratio of the two intensities
at 3kHz compare with the ratio at
400 Hz?

PART II: Resonance

The equipment needed is a tuned guitar,
an audio oscillator, a small speaker, and an
intensity-level meter (called a decibel or dB
meter; decibels will be defined later in this
section of the module).

Set the guitar, neck up and face out, in a
soft chair or on other material capable of
absorbing stray sound. Place the speaker
about six inches away from the sound hole
and aimed at the hole. Connect the audio
oscillator to the speaker. Hold the dB meter
about two or three feet away from the guitar
as shown in Figure 25.

Now turn on the oscillator and vary the
frequency of its output, starting at low values
and sweeping slowly across the entire range of
hearing. Observe the readings of the dB meter
as you make this sweep.

A frequency which sounds louder than
others, and for which the dB meter reading is
a maximum value, is called a resonance or a
resonant frequency.
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Figure 25.

1. How many resonances do you observe?

What is the source of these resonances?
Is it the speaker? Is it the guitar body? Is it
the strings on the guitar? Actually, all three of
these vibrating objects are involved. The
strings have their strongest resonances at their
fundamental frequencies. The guitar body has
resonances at frequencies which depend on its
size and the way it is constructed.

Look at one of the string resonances. To
do so set the oscillator at 294 Hz; then slowly
adjust the tuning peg of the 4th string (the D
string), first to loosen the string slightly, then
to tighten it again. Repeat this until you feel
the string resonate. You can do this by
touching the string very lightly. If you place
the guitar in a horizontal position, with the
speaker directed downward into the sound
hole, you can use a more sensitive method.
Tear a tiny strip of paper, 1/8-in wide and
1-in long. Fold it and hang it over the string at
the sound hole. When the resonance occurs,
you can see the paper bounce up and down.

Adjust the other five strings by tuning
them to the D string. Tune these strings by
the standard method used by guitarists (your
instructor will explain this simple technique if
you don’t already know it).

2.  Now, use the strip of paper as a detector
and slowly adjust the oscillator fre-
quency upward, starting at about

150 Hz. In this way find the resonant
frequency of each of the other five
strings. (You may have difficulty seeing
these resonances for the first and second
strings, but do try.) Record these fre-
quencies on the worksheet.

Now, remove the guitar and use the dB
meter to look for resonances in the speaker.
The oscillator produces a fairly “flat” (same
sized) signal over the range of frequencies you
are listening to. Therefore, if the dB meter
shows a maximum reading at some frequency,
it is a resonant frequency of the speaker.

3. What is the most pronounced resonant
frequency of your speaker?

Now direct the speaker back into the
sound hole of the guitar and look for another
resonance. Be sure that it is not the speaker
resonance. Where you find a resonance, feel
the strings to see if any one of them shows a
strong resonance. If so, you may be at a string
resonance.

If several of the strings show some
vibration, this could be because the guitar
body is resonating and transferring some
vibrations to the strings. When you are sure
the resonance is for neither the speaker nor
for any of the strings, it must be in the guitar
body itself.

When you find a body resonance you
can study it in more detail. First, put the dB
meter in a fixed location, about two feet from
the guitar, and vary the frequency of the
oscillator from about 100 Hz below the reso-
nant frequency to about 100 Hz above the
resonant frequency.

4. Record the readings of the dB meter at
several different frequencies in this
range, say about every 20 Hz. Plot a
graph of the intensity level recorded on
the dB meter versus frequency of the
signal. This graph is called a response
curve.

5. At resonance, can you feel the vibration
of the sound board of the guitar? One
way to look for these vibrations is to
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sprinkle cork dust over the sound board
of the guitar when it is horizontal (with
the speaker directed into the sound hole
from above).

If the sound board and other parts of the
surface of the guitar body were not vibra-
ting much at the resonance you found, you
may have found the so-called Helmholtz reso-
nance. The Helmholtz resonance results from
vibrations of the air inside the box, and is the
same kind of resonance you get from blowing
gently across the top of a soft drink bottle.
You can check for a Helmholtz resonance by
covering the sound hole with a piece of card-
board. If the sound of the resonance greatly
decreases in loudness, then you have found
a Helmholtz resonance.

If the sound board does vibrate a lot, then
the resonance is one of the natural modes of
vibration of the sound board. If this is the
resonance you observed, see if you can find
the frequency for the Helmholtz resonance.

Now go back to one of the string
resonances.

6. How much must you change the fre-
quency from resonance before the string

ceases to vibrate a noticeable amount?

7. Which resonance has the “widest” re-
sponse curve, that for a string, or for the
guitar body or sound board?

To better observe the resonances of the
guitar body and strings, you have been pro-
vided an acoustic transducer. This device is
the same as a speaker, but with the speaker
cone replaced by a screw. This transducer can
be touched to objects to make them vibrate.
Connect the oscillator output to the trans-
ducer as shown in Figure 26. Set the oscillator
at 294 Hz and hold the transducer in the
position shown in the figure so that the screw
touches the 4th string (D) about 1/8 in from
the bridge. Then slowly adjust the oscillator
frequency above and below 294 Hz until the
string begins to vibrate. Again, if you have
trouble seeing the oscillations, place a small
folded piece of paper over the string at the
sound hole.

8. Using the same method, locate the reso-
nant frequencies for the other strings
and for the guitar body. Record these
results.
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DISCUSSION OF EXPERIMENT B-2

In Experiment B-2 you observed that,
for a single frequency, increasing the ampli-
tude of the sound wave increases the loudness
of the sound. Sound waves of the same
amplitude but of different frequencies pro-
duce different sensations of loudness. Fre-
quencies between 3 kHz and 4 kHz generally
sound the loudest for a given amplitude, and
frequencies below 20 Hz or above 15 kHz to
20 kHz are not audible at all. This last fact
means that the typical human ear is respon-
sive to sound-wave frequencies between 20 Hz
and 20kHz at best. It is most sensitive to
frequencies around 3.5 kHz.

Question 13. It is possible for you to call
your dog with a whistle that is inaudible to
humans. How can this be true? Make your
answer in terms of concepts such as frequency
and sensitivity.

In Part II of Experiment B-2, you found
resonance for which there was little vibration
of the sound board. This particular resonance
is called the Helmholtz resonance, and it is
named for a nineteenth century German
scientist. The Helmholtz resonance involves
pressure oscillations throughout the sound
box at a frequency determined by the proper-
ties of the air within the sound box. This kind
of resonance also causes the musical sound
you hear when you blow across the mouth of
an empty bottle. You detected other reso-
nances. These resonances are associated with
sound-board vibrations.

Most of the sound coming from a guitar
is caused by vibrations of the wooden sound
board and the air in the sound box. These
vibrations are excited by the vibrating strings.
Since the guitarist controls the frequencies of
the vibrating strings, a sound of any desired
pitch can be obtained. However, the intensity
of this sound would be small if the string
vibrations were not coupled to the bridge, and
thus in turn to the sound board and the air
cavity. The response of these structures is
large at certain resonant frequencies. Fortu-
nately there are several of these resonant

frequencies and the response curve for each
resonant frequency is so wide that sounds at
all string frequencies are amplified to some
extent.

SOUND INTENSITY AND DECIBELS

You have observed how the loudness of
sound depends upon frequency and ampli-
tude. Let us now consider in more detail how
loudness is measured. When a sound wave
strikes your ear, pressure variations cause the
eardrum to vibrate. This disturbance produces
signals that are transmitted to your brain and
interpreted as sound. The ear is an extremely
sensitive detector of sound. For soft sounds,
the eardrum may move through a total
distance (amplitude) smaller than the diam-
eter of a single atom (10" % m) and still
detect the sound. The total change in pressure
associated with such a sound may be only one
ten-billionth (10-l o) of atmospheric pressure.
If the eye could respond to an amount of
light energy equal to the smallest amount of
sound energy audible to the ear, one could see
50 W of visible light from 3000 miles away.
(This would require about a 500-W bulb, since
only about 10% of the radiation from a light
bulb is visible.) On the other hand, the ear
also responds to sounds a trillion (10" 2) times
more powerful than the minimum audible
sound.

Question 14. a. When you nod your head,
the slight altitude change produces a pressure
change of about 10'° that of atmospheric
pressure. If the ear is so sensitive to changes in
pressure, why do you not hear a tone when
you nod your head up and down rapidly?

b. If a meter stick which is tightly
clamped to a table top so that most of its
length protrudes over the edge is set into
vibration, you do not hear the vibrations. But,
if it is clamped with just a short length
protruding over the table edge, the vibrations
are clearly audible. Why?

Starting with the plucking of the guitar
string, and in all other instances of sound



production that you have observed, the “size”
or amplitude of the disturbance is somehow
related to the sensation of loudness. It turns
out that the relation is more subtle than one
might first guess. For example, doubling the
amplitude does not give twice the initial
loudness. We shall now see what measures of
loudness are appropriate and useful.

The frequency of a sound wave is used as
a measure of pitch. The amplitude of a sound
wave is related to its loudness, but amplitude
alone is not a convenient measure of loudness.
The energy carried by the wave is propor-
tional to the square of the amplitude, but
even this iS not a convenient measure of
loudness. To make things more complicated,
the human ear does not respond linearly to
the wave energy; a wave carrying twice as
much energy does not sound twice as loud.
The energy carried by a wave is measured by
the quantity called intensity I The intensity
is defined as the amount of energy which
passes through a unit of area (perpendicular
to the direction of propagation of the wave)
in one second of time. Thus if a total amount
of energy E passes through an area A4 in a time
interval Ar*, we define the energy per unit
area per unit time by

po £
Ar-A
(Definition of Intensity)

9

Energy delivered per unit time is called
power. You are familiar with some common
units of power in such uses as a 40-wat? light
bulb or a 300-horsepower engine. Mathemat-
ically, we can write

P=E/At (10)
(Definition of Power)
so that
I=P/A (11

Intensity has units of watts per square meter
2

(W/m”™).

*The Greek letter delta (A) is often used to indicate

a change or difference in a quantity. Here it indicates
an elapsed time interval.

Example Problem. In normal conversation,
the sound at your ear has an intensity of
about 107 W/m>. If the area of the eardrum
is 5X 10° m®, what sound power (energy
per unit time) passes into the ear?

Solution. Given in the problem are
I=10" W/m?

and
A=5X10"m?

The equation 7= P/A must be rearranged in
order to solve for the power. If both sides of
that equation are multiplied by A, we obtain

P=1]4

Substituting the given values into this equa-
tion,

P=10"7 W/m?
X 5X10° m?

Performing the power of ten multiplication
and gathering units,

P=5X%X10"% (W/m?) X m*
or

P=5X10"*WwW

Question 15. If the power of sound entering
your ear during normal conversation is
5X10"'? W, why would you need a stereo
system amplifier rated at 10 W to 100 W?

Problem 4. The light from a 100-W light bulb
has an intensity of 0.4 W/m? at a distance of
4 m from the bulb. If the pupil of your eye
has an area about equal to the area of the
eardrum (5 X 10° m?) and is located 4 m
away from the bulb, how much power is
received in your eye from this light source?

Problem 5. Traffic on a busy city street
creates a sound intensity of 10* W/m?. If the
eardrum has an area of 5 X 10° m?, what
power impinges on the eardrum?

37



38

The human ear can distinguish between
two frequencies that differ by as little as 0.3%
in the range from 500 Hz to 4 kHz and much
less than this for musical tones made up of
harmonics. For example, at 1000 Hz, the
frequency must increase to about 1003 Hz
before your ear can detect a change. At
3000 Hz, the frequency must increase to
about 3009 Hz for your ear to detect the
change. The ear does not detect a fixed
difference of frequencies but, instead, detects
a change given approximately by the ratios of
the two frequencies. That is,

f2/f1 =1.003

where f; is the original frequency and f, is
the value of frequency just enough higher
than f; that your ear can perceive a pitch
change under ideal conditions.

As you observed in Part I of Experiment
B-2, the ear responds to loudness in a similar
way. Suppose you are listening to a 1-kHz
tone and the intensity at your ear is 1.62 X
107 W/m>. In order to hear a change in
loudness, the intensity at your ear must
increase to about 1.80 X 10’ W/m These
two intensities have a difference of (1.80 X
107 - 1.62 X 107) W/m>. One might expect
that increasing the intensity by another
0.18 X 107 W/m® would again give a detec-
table change in loudness. But in fact it
doesn’t! The intensity must be increased from
1.80 X 107 to 2.00 X 107 W/m>, a differ-
ence of 0.20 X 107 W/m?, to be noticeable.
However, the ratios 1.80/1.62 and 2.00/1.80
are both equal to 1.11. Your ear does not
detect a fixed difference of intensities. In-
stead, it detects an intensity change given by
fixed ratios of the two intensities. That is,

I/l =1.11

where I; is the original intensity and I, is the
value of intensity just enough greater than /;
that your ear perceives a change in loudness.

As you probably found in Experiment
B-2, the ratio from one intensity to the next

perceptible intensity is not exactly 1.11.
Indeed, this ratio may change considerably
for different frequencies, and for different
levels of loudness. In an acoustical laboratory,
the ratio 1.11 can be obtained for a rather
wide range of frequencies and loudness levels.
However, for the ordinary person listening in
a room, the ratio may be closer to 1.25.

At very low and very high sound levels,
and for frequencies which are at the extremes
of what people can hear, the ratios for
perceptible changes in loudness are greatly
different from the usual range of 1.11 to
1.25. For example, at 35 Hz, a barely audible
frequency, the ratio is about 8. For a very
loud tone at 1000 Hz, the ratio is about 1.06.
For a barely audible tone at 1000 Hz, the
ratio is 2.

Since the ratios are not really very
constant, you may well ask why the ratio
“law” is significant. The important thing to
realize is that the differences in sound intens-
ities for perceptible changes vary enormously,
while the ratios of these same intensities are
nearly constant. This means that a ratio is
more nearly correct (instead of a difference)
in describing how our ears respond to intens-
ity changes. For example, at 1000 Hz, a
barely audible tone must have an mtens1ty
difference of about 3 X 10'% W/m? to be
perceptible. For a loud tone at that same
fre%uency, the difference must be 6 X

) W/m?. The latter difference is some
200 million times greater than the intensity
difference required for a barely audible tone.
Whereas, the ratio for one case is only 3 times
larger than that for the other.

Decibels

In other words, before your ear can
detect a loudness change, the intensity of
sound must increase by between 11% and
25%. This physiological response to sound is
one example of the way your senses respond
to all stimuli. For example, you respond in a
similar way to pressure differences on your



skin and to changes of light intensity in your
eyes. For perceiving changes in touching
pressure, the ratio is about 1.03. For changes
in light intensities, the ratio is about 1.008. In
terms of percentages, the pressure must
change by about 3% to be detectable, light
intensity must change by about 0.8%. The
general principle involved here is called the
Weber-Fechner Law: A change in the
strength of a stimulus necessary to produce a
perceptible difference in sensation is propor-
tional to the intensity of the stimulus already
acting.

The numbers and percentages quoted
above are determined by sampling the re-
sponses of large numbers of people. Thus,
they represent average, or typical, responses.
Because the ratios do change so much over
the range of hearing, and because the subjec-
tive sensation of loudness is far more compli-
cated than we have indicated, the Weber-
Fechner “law” cannot be considered a
scientific law in any strict sense. Still it is a

good approximation, and it makes the impor-
tant point that the ratios rather than differ-
ences are more nearly constant.

Question 16. In your own words present an
argument showing that the Weber-Fechner
Law does indeed describe the idea illustrated
in the preceding numerical examples.

Because your ear responds to sound
intensity only in steps based on ratios, let us
consider these steps. Suppose we let I, stand
for the intensity of a tone which is barely
audible. Then the next higher intensity of
that tone which is discernible at a different
intensity is 1.11 times [,, or 1.11 ;. The
next level of intensity which is perceptibly
louder is 1.11 times this latter intensity, or
1.11 (1.11) I, = (1.11)*I,. This procedure
can be repeated for each discernible increase
in intensity level. We can continue in this
way, constructing Table 1.

Table 1.

Intensity

Number of Discernible Steps
above Audible Level

Iy =1.11)° I,

I, =111, =1.1D' I,
L=1111 =(1.11)* I,
L=1111 =111,

L=1111, =(11D* I,

In=1111I, =111 I,

0

1
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Problem 6. Fill in Table I for the cases of five
and six discernible steps above audible level.

The important thing about this table is
that, for a given number of discernible steps
above the audible level, the intensity is given
by an expression which contains the step
number as an exponent. For example,

I =110 I,

for step number 4. Expressed as a ratio, we
have

I/, =(1.11)*
or, for the nth step,

L/l =11 (12)
If we take the logarithm of each side of this
equation, we get

log (In/I) = log (1.11)"
=nlog(l.11)

where all the logarithms are to the base 10.
Solving for n, we get

1
=——
n log 1.1 og (In/ly)

or

n = 22log (y/I,) (13)

These step numbers are “equally spaced” as
far as our ability to detect loudness changes
for a particular frequency tone is concerned.
These step numbers vary with the logarithm
of the intensity ratio, and not with the ratio
itself. For this reason, we say that our ears
“respond logarithmically” rather than direct-
ly to changes of sound intensity.

In technical work it is conventional to
use a unit of intensity level which is different
in size from the discernible step level our ears
perceive. This unit, called the bel, is named

after Alexander Graham Bell. The intensity
level (I.L.) in bels is given by

LL. =log(l/l,)
(Definition of sound intensity
level in bels)

(14

From Equations (13) and (14), the number of
discernible intensity steps between the two
given levels, I, and I, is related to I.L. by the
expression
n~22IL (15)
Thus, there are about 22 discernible
intensity steps in one bel. One bel is therefore
a very large unit (like using pounds when
ounces would be more appropriate). A smaller
unit is much more convenient. This more
commonly used unit is one-tenth of a bel and
is called a decibel (dB). There are 10 dB in
1 bel:

LL. (in dB) =10 log (I/I,) (16)

If a decibel is one-tenth the size of a bel,
the decibel is about the size of 2.2 discernible
intensity steps, or

n=22IL. (in dB) (a7

The number of discernible steps of
sound level is not an exact number. There is
considerable variation according to frequency,
loudness, and the individual. The ratio 1.11 is
only approximate, so that the constants in
Equations (12), (13), (15), and (17) are only
approximate. It is the approximately loga-
rithmic response of our sense of hearing
which is important. Thus, Equations (14) and
(16), which are exact definitions, serve
scientific purposes, whereas the less exact
equations based on the approximate, experi-
mentally determined ratio 1.11 merely serve
to help us understand why we use a loga-
rithmic form for intensity level. To provide a
common base or reference level relative to
which intensities are measured, the numerical
value 10" 2 W/m? is chosen as the minimum
audible sound intensity. Thus



I, =102 W/m?
(Accepted minimum audible
sound intensity)

(18)

Example Problem. The sound level for
normal conversation was given earlier as
107 W/m?. What is this intensity level in
bels? What is it in decibels? About how many
discernible loudness levels is normal conversa-
tion above a barely audible sound?

Solution. Given in the problem is
I=10" W/m®
The minimum audible sound level is
Io =107 % W/m?

Substituting these values into Equation (14),

we have
107 W/m®
IL =1 —_—
L og (10 12 W/m2

or
Intensity level = log (10°)
The base ten logarithm of 10° is 5; thus
ILL =5 bels

Since there are 10dB in every bel, the
intensity level for conversation is 50 dB.
(From this point on, the word “decibel” will
be replaced by the symbol “dB.”)

From Equation (17) we see that there
are about 2.2 discernible sound level steps in
each dB; therefore there are about 2.2 X 50,
or 110 discernible sound level steps from a
barely audible sound to the sound level of
normal conversation.

Example Problem. The sound level in a fac-
tory is 98 dB. What intensity is this in W/m??

Solution. The intensity level is 98 dB, and
the reference intensity I, = 10'% W/m>. The
intensity level must be expressed in bels and
Equation (14) may be used to solve for I.

Taking the antilog of both sides of Equation
(14) gives

Antilog (I.L. in bels) = I/I,
Multiplying both sides by I, then gives
I = [antilog (L L. in bels)] X I,

The intensity level in bels for this example is
9.8. Substituting into the rearranged equation
gives

I = [antilog (9.8)] X 10"? W/m?

From a table of common logarithms,
I=[6.3X10"] X10"? W/m?
or
I=6.3 X102 W/m?

Problem 7. Hearing becomes painful at a
sound level of about 1 W/m®. Calculate the
sound intensity level in bels for this sound
level. What is the intensity level in dB? About
how many discernible loudness levels above a
barely audible sound is this threshold of pain?

Problem 8. The sound made by the feet of a
small dog running across the floor has an
intensity of 3.2 X 10" W/m®. What is the
intensity level in bels? What is it in dB?

Problem 9. The sound of an electric motor
has an intensity level of 55 dB. Calculate the
intensity of this sound in W/m2 .

Problem 10. For each intensity level in the
following table, calculate the intensity in
W/mz. Express each numerical value as a
number times 10 2,

HEARING RESPONSE

Figure 27 is a graph that shows the
hearing ability of the population as a whole.
Each curve on the graph is labeled with a
number which gives the percentage of the
population who can hear that intensity and
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Table II. Intensity Levels of Some Familiar Sounds

Threshold of hearing 0dB Very heavy traffic in a large city 80 dB
Gentle rustle of leaves 10dB Subway station with
express passing, New York 95dB
Whisper at 4 ft 20 dB
Power lawnmower 110dB
Quiet suburban street 30dB
Steel plate hammered
Quietest time at night, by four men, 2 ft away 112 dB
center of a large city 40 dB
Sounds of the firing of a
Conversation at 12 ft 50dB .357 Magnum pistol, 3 ft away 120 dB
Busy traffic in a large city 65dB
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frequency. The top curve (called the thres-
hold of feeling curve) is the highest intensity
perceived as sound. Higher intensities are
perceived as pain. The bottom (1%) curve is
usually taken as “normal” hearing. It is
assumed that, if 1% of the population hear
tones at these intensities, that is “normal”
hearing. The other 99% of the population, for
one reason or another, has lost this hearing
ability. Even for the 1% curve, the threshold
is not 0 dB at all frequencies. For example, at
200 Hz the intensity level must be 20 dB
before the sound is perceived by those with
normal hearing. The 50% curve is indicative of
“average” hearing, because half the popula-
tion hears better and half hears worse. Note
that “‘average” hearing is not “normal”: at
200 Hz the intensity level must be about
35 dB before 50% of the population hears it.

Question 17. What frequency sound is heard
by the largest number of people at a level of
10 dB? About what fraction of the popula-
tion can hear it?

Question 18. What fraction of the population
can hear 100 Hz at 20 dB? At 60 dB?

Question 19. Between about 1300 Hz and
5000 Hz, the 1% curve in Figure 27 is below
0. What does this mean? Can it be correct?
Explain your answer carefully.

INTENSITY LEVEL IN PHONS

Figure 27 indicates that the ear is not
equally sensitive to all frequencies. Although
the decibel scale corresponds roughly to the
sensation of loudness at a single frequency, it
cannot be used to compare the relative
loudness of two sounds at different fre-
quencies. For the latter purpose a new scale
of loudness, in units called phons, is used.
This scale of loudness is based on hearing
response at a frequency of 1000 Hz. The
loudness level (in phons) of any tone is
defined as the intensity level (in decibels) of a
1-kHz tone of equal loudness. Thus, a tone of
frequency 1 kHz and intensity level 40 dB has
a loudness level of 40 phons. The loudness of
"*other frequencies i§ -determihed- by experi-

ments. While one cannot accurately judge
changes in loudness, one can tell when two
sounds are equally loud. In the experiments,
people were asked to judge when sounds of
different frequencies were as loud as a 1-kHz
sound. In this way, curves of equal loudness
were generated for various loudness levels.
The results are summarized in Figure 28,
where each equal-loudness curve is labeled by
its phon value. The phon has only limited
usefulness. It is actually used to arrive at
another measure of loudness, the subjective
loudness expressed in sones. We will not
consider sones in this module.

Example Problem. What is the loudness level
in phons of a 100-Hz tone at an intensity level
of 60 dB?

Solution. Since loudness is a subjective quan-
tity, and the data has been presented here in
the form of a graph, the solution is obtained
by referring to Figure 28. The intersection of
the frequency (horizontal) axis with the
intensity-level (vertical) axis is read in rela-
tionship to the loudness curves (labeled in
phons). In this example the 100-Hz line
intersects the 60-dB intensity level line at a
point about halfway between the 30- and 40-
phon curves. The loudness is then about 35
phons.

Example Problem. What intensity level must
a 10-kHz tone have in order to sound just as

loud as a 1-kHz tone with an intensity level of
40 dB?

Solution. We know that the loudness level for
the 1-kHz sound is 40 phons. We then refer to
the graph of Figure 28 and follow the
40-phon curve until it intersects the 10-kHz
line. This intersection corresponds to an
intensity level which may be read on the
vertical axis. In this case that intersection
corresponds to an intensity level of about
52 dB.

Problem 11. What is the loudness level in
phons of a 400-Hz tone at an intensity level

¥ af20rdB?
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Figure 28. Curves of equal loudness.

Problem 12. What intensity level must a
40-Hz tone have in order to sound just as loud

as a 1-kHz tone with an intensity level of
60 dB?

Question 20. Is there any frequency other
than 1 kHz at which a sound with an intensity
level of 40 dB has a loudness of 40 phons? If
so0, at what frequency does this occur?

SUMMARY

In this section you have discovered the
empirical relationship between the funda-
mental frequency f of a string and properties
of the string, the tension 7, mass m, and
length L. This relation can be written as

f=K/T/mL

where K is a constant of proportionality.

You have also found that the frequencies
to which the human ear responds range from
about 20 Hz to 20 kHz, with the best re-
sponse falling between 3 and 4 kHz. Two

amplitudes such that the ratio of their squares
is a constant, regardless of what amplitude
you begin with. Saying this differently, the
ratio of intensities is constant.

The sound of a guitar depends on the
resonances between the oscillations of the
string and the possible oscillations of the air
inside the guitar box or those of the sound
board.

You learned definitions of sound-wave
intensity and level. Intensity [ is given by

I=P/A

where P is the power carried by the sound
wave and A4 is the area over which that power
is spread. Intensity level L. is defined in
terms of intensity / and the minimum aud-
ible intensity (arbitrarily chosen as [, =
10" W/m®):

LL. = log, o U/I,) in bels



or
LL =10log, 4 (I/Iy) in decibels (dB)

Intensity level is a measure of loudness at a
single frequency. The number of discernible
steps n in loudness at a given frequency is
given approximately by

n=22IL. (in dB)

Finally, you learned that the variation of
loudness sensation with frequency is specified
by graphical information, such as the whole
population hearing curves of Figure 27 and
the curves of equal loudness of Figure 28.

45



46

GOALS FOR SECTION C

The following goals state what you
should be able to do after you have com-
pleted this section of the module. These goals
should be studied carefully as you proceed
through the module and as you prepare for
the post-test. The example which follows each
goal is a test item which fits the goal. When
you can correctly respond to any item like
the one given, you will know that you have
met that goal. Answers appear immediately
following these goals.

1. Goal: Understand how the superposi-
tion of two traveling waves produces a
standing wave.

Item: Sketch the resultant standing
wave between B and C at the instant the

two traveling waves are as shown in
Figure 29.

8]
N c L/
Figure 29.

2.  Goal: Know the relationship between
the speed, wavelength, and frequency of
a wave.

Item: If the speed of sound in air is
340 m/s, what is the wavelength of a
440-Hz tone?

3.  Goal: Know the general formula for the
frequencies of the normal modes of
oscillation of a string which is fixed at
both ends.

Item: What is the frequency of the third
harmonic of a string 40 cm long whose
mass is 20 g and which is under 64 N of
tension?

4. Goal: Understand how the superposi-

tion of harmonics on a string produces
any particular standing wave.

Item: A guitar string is plucked at one-
fourth the distance from bridge to nut.
What harmonics are missing? Is the
second harmonic very small in amplitude
compared to the fundamental or not?
(Use sketches to decide, if necessary.)

5. Goal: Understand the physical basis of
musical intervals, consonance, and dis-
sonance.

Item: The three notes immediately
above E are F, G, and A. Which of the
three form consonant intervals with E
and what are the intervals?

Answers to Items Accompanying
Previous Goals

1. See Figure 30. Less than the full maxi-
mum displacement.

B \{C

Figure 30.



2.

773 m.
134 Hz.
4th, 8th, 12th, etc. missing. The ampli-

tude of the second harmonic will be
relatively large compared to its ampli-

tude when the string is plucked at other
points.

G is consonant, forming a minor third; A
is consonant, forming a fourth; F is not
consonant.
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SECTION C

TRAVELING WAVES ON A STRING

You have discovered that some patterns
of vibration on a guitar string have simple
properties. Each pattern has nodes at both
ends, where the string cannot move. The
simplest pattern has amplitudes of oscillation
that increase gradually from the ends to a
maximum, called an antinode, at the mid-
point. Other simple patterns are similar,
except that additional nodes and antinodes
appear. On strings, the nodes are always
equally spaced. Associated with each pattern
is frequency given by an equation that you
discovered empirically in Experiment B-1:

T

where T is the tension in the string, m and L
are the mass and length of the portion that
vibrates, and K is a constant that can be
determined by measurement.

Why does the string behave this way?
Can we propose a set of simple ideas about
what goes on when the string vibrates such
that the string equation above becomes a
necessary result? Such a set of ideas is called a
model or, if it encompasses a wide range of

phenomena, a theory. If the equation derived
from the theory agrees with the equation that
was determined from experiment, then we
regard the theory as tentatively correct. A
good theory can also be used to predict the
results of experiments not yet performed. If
the results of these new experiments agree
with the theoretical predictions, we gain more
confidence in the theory. If they do not, we
may either discard the theory and replace it
with a new one, or modify it so that it
predicts correctly the results of all the experi-
ments we know about. Note that there is a big
difference between facts and empirical rela-
tionships on the one hand, and models and
theoretical equations on the other. The
former are not matters of opinion and they
are not subject to change, except for refine-
ments that result from reductions in the
errors of measurement. The latter are crea-
tions of human minds, and they must be
modified whenever new evidence indicates
that they are inconsistent with the facts.

What we now seek is a theory from
which we can deduce the string equation as a
necessary consequence. Experiment C-1 will
help to suggest a suitable model for the
behavior of vibrating strings.



EXPERIMENT C-1. Transverse Pulses on a Spring

The equipment needed is a long spring
and a timer. You have already observed that
there is similarity in the patterns of transverse
vibrations on stretched springs and on guitar
strings. Since the patterns on the spring are
easier to see and the frequencies produced are
lower, it requires less equipment to make
measurements using a spring.

Stretch the spring between two points
on a smooth floor; keep these endpoints fixed
during the measurements described below. In
this way, the spring will be similar to a guitar
string fixed at each end. Near one fixed end
pull a piece of the spring to one side and
release it. Watch the pulse travel back and
forth along the spring. Count the number of
such traversals that you can follow clearly.
Now repeat this procedure, but use a stop-
watch to measure the time it takes for the
pulse to complete as many trips back and
forth as you can easily observe. (On a guitar
string, a pulse like this moves much too fast
to observe and time with a stopwatch.)

1.  What is the time required for one com-
plete round trip of the pulse? (A round
trip is the motion of the pulse from its
starting point down to the far end, back
to the near end, and back to its starting
point.)

With the spring raised up off the floor,
push the spring gently to and fro sideways
near one end so as to excite the simplest
pattern of vibration. That is, the pattern is the
one with nodes on the ends and an antinode
at the midpoint. This situation is the same as
when a guitar string vibrates at its funda-
mental frequency. When this pattern is well
established, measure the time it takes to
complete some predetermined number of
complete oscillations. (A complete oscillation
is the motion of the spring from a maximum
displacement on one side to a maximum
displacement on the other, then back to its
original position.)

2.  What is the time required for one com-
plete oscillation? This time is called one
period of oscillation, or more simply,
one period.

3. What is the frequency of oscillation?
How is the frequency related to one
period?

4. How does the time required for a pulse
to travel to the end of the spring and
back compare with the time found in
Question 2 for one complete oscillation?

Now with the spring back on the floor,
create a single transverse pulse and watch it
travel back and forth along the spring.

5. Describe how the shape of the pulse
changes as it travels along. Would you
say that shape change is rapid or slow?

6. Describe any change in amplitude (maxi-
mum displacement) that occurs as the
pulse travels along. Would you say that
the amplitude change during one trip
down the spring is large or small?

7.  After the pulse reflects from an end

a. Is the pulse displacement on the
same side of the spring as before
reflection or on the opposite side?
If the reflected pulse is on the same
side, we say it is reflected in the
same phase as the incident pulse. If
it is on the opposite side, we say it
is inverted relative to the incident
pulse.

b. Is the shape of the pulse much
different from its original shape?

Now create a pulse with a small ampli-
tude by striking the spring lightly with the
edge of your hand near one end (a gentle
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karate chop). Time the back-and-forth motion
as you did earlier. Next create a larger ampli-
tude pulse of similar shape by striking the
spring harder at the same place. Again time
the back-and-forth motion.

8. Is the time required for one complete

round trip nearly the same or quite

different for two pulses of different
amplitude?

Now create a broader pulse by quickly
moving the end of the spring to one side,
holding it there briefly, then moving it
quickly back to its initial position. Measure
the time it takes the pulse to complete a
round trip.

9. Is the time required for one complete
round trip nearly the same for a broad
pulse as for a narrow one?

For the next part of the experiment, you
will need the cooperation of at least two
other persons. One person should count ca-
dence and at the signal, GO, the other two
should introduce pulses at opposite ends of
the spring. The two pulses should be as similar
as possible, and on the same side of the
spring, as shown in Figure 31. This will take
some practice. Watch what happens in the
region where the two pulses overlap briefly.
Also try to follow one of the pulses after it
emerges from this overlap region. (If things
happen so fast that you can’t follow them,
reduce the tension in the spring and the pulses
will travel more slowly.)

10. Is the maximum displacement in the
overlap region greater than, equal to, or
less than the amplitude of either one of
the original pulses? Do you think it is

Y

greater than, equal to, or less than the
sum of the amplitudes of the two origi-
nal pulses?

———

Figure 31.

11. After a pulse emerges from the overlap
region, is it essentially the same as or
completely different than it was before
it entered the overlap region?

Now repeat the previous observation,
but with one important difference: one origi-
nal pulse should be on one side of the spring,
and the other pulse should be on the other
side of the spring. This situation is shown in
Figure 32. We say that the displacement on
one side is positive and the displacement on
the other side is negative.

+ Ve

——————

Figure 32.

12. When the centers of the two pulses reach
the midpoint of the spring, is the dis-
placement of the midpoint greater than,
equal to, or less than the amplitude of
either original pulse? Do you think this
displacement is greater than, equal to, or
less than the difference between the
amplitudes of the two original pulses?

13. Do the puilses that emerge from the
overlap region look similar to those that
enter?



DISCUSSION OF EXPERIMENT C-1

You saw in this experiment that a pulse
moves along the spring without changing its
shape appreciably. The amplitude decreases,
but the decrease is not very big during one
trip down the spring. Therefore, you can
follow the pulse during a few trips back and
forth. The time it takes for a complete round
trip of a pulse is nearly constant; thus the
velocity of the pulse does not depend much
on the amplitude or the breadth of the pulse.

After a positive pulse reflects from one
end, it comes back as a negative pulse and,
similarly, a negative pulse is reflected as a
positive pulse. That is, the direction of the
displacement of the pulse is reversed upon
reflection. However, the reflected pulse has
the same general shape as the original pulse.

When two positive pulses overlap, they
combine to produce a displacement that is
larger than the amplitude of either original
pulse. When one positive and one negative
pulse overlap, they combine so that they
almost cancel each other. It is consistent with
your observations to say that at each point
along the spring, the actual displacement is
the sum of the individual displacements which
the two pulses would cause separately at that
moment. This statement is called the law of
superposition for displacements. The pulses
emerge from the region of overlap largely
unchanged in size and shape.

Finally, you probably observed that the
time it takes for a pulse to make one
complete round trip along the spring is the
same as the time for one complete oscillation
of the vibration pattern corresponding to the
first harmonic. All these observations suggest
a model for the way simple patterns of
vibration—called standing waves—result from
the superposition of waves that travel back
and forth along the spring. This same model
applies to guitar strings.

Consider the wave train traveling to the
right pictured in Figure 33a. For the time
being, forget about the fact that the spring is
only of length L and is tied down at the ends.
Imagine for the moment that the spring is
much longer.

Figure 33b shows how another wave
train would appear if it were moving in a
direction opposite to that shown in Figure
33a. Now imagine that these two waves are
present simultaneously in the region between
points B and C. This is the region where the
real spring exists. Applying the principle of
superposition, we conclude that the spring
should appear at that instant as shown in
Figure 33c. The displacements at both ends
(points B and C, where the spring is tied
down) are zero, and in the middle the
displacement is twice that of either wave by
itself.

A wave train like those shown in Figure
33 is a set of identical wave shapes, or cycles,
which repeat themselves along the wave train.
The length of one of these identical wave
shapes is called the wavelength of the wave.
As you can see in Figure 34, one wavelength,
represented by the symbol A (lambda), is the
distance from crest to crest. The wavelength is
also the distance from any point on one cycle
of the wave to the corresponding* point on
the next cycle.

Question 21. Using the definition of wave-
length, explain why the distance from A to C
in Figure 33a is one wavelength, and why the
distance from B to C is one-half wavelength.

When the crests (or troughs) of two
waves occur at the same place at a given time,
as in Figure 33, we say that the waves are in
phase.

Now consider how the two waves travel-
ing in opposite directions would appear after
each wave had traveled one-quarter of a
wavelength farther than shown in Figure 33.
Point A in Figure 35a shows the wave moving
to the right after it has moved % A further to
the right. In Figure 35b, the wave is moving
to the left after it has moved % A further to
the left.

We again imagine that these two waves

*Given a point on the wave, a corresponding point on
the next cycle would be the next point on the wave
where the slope has the same value and the amplitude
has the same value.
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are present simultaneously in the regions
between points B and C, where the real spring
exists. When we apply the principle of super-
position to these two waves, the spring
appears at that instant as shown in Figure
35c. One wave cancels out the other. We say
that these two waves are out of phase by
one-half wavelength.

Let us see what happens to the two

waves after they have each traveled another
quarter of a wavelength. Their positions
would then appear as shown in Figure 36a
and b. The two waves are again in phase, but
each has displacement opposite to that it had
initially. As shown in Figure 36c, applying the
principle of superposition results in a trough
with twice the amplitude of either wave
separately.
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Problem 13. Sketch the two waves, one
moving to the right, and the other to the left
a. after each wave has moved % A farther than
shown in Figure 36, and b. after each wave
has moved 2\ farther than shown in Figure
36.

Question 22. Study the superposition that
results between points B and C for Figures 33,
35, 36, and the two sketches you made in
Problem 13. Regard the region between B and
C as the location of the real spring. What is
that part of the spring between B and C doing
during this sequence? Are points B and C
nodes, as the end points of the spring must
be, during the time that the two imaginary
waves are moving through each other?

Two waves moving in opposite directions
on a long spring can, by the principle of
superposition, be added algebraically. The
superpositions described above reveal that

two wave trains traveling in opposite direc-
tions can combine to produce a pattern on a
coiled spring or a guitar string that includes
nodes and antinodes at specific locations
along the spring or string, just as we observed
them on an actual vibrating spring. These
patterns of vibration are referred to as stand-
ing waves. The two original moving wave
trains are called traveling waves.

What are the implications of our infer-
ence that two oppositely directed but other-
wise identical traveling waves are equivalent
to a standing wave? If this inference is to be
plausible, then it must be that the wave
traveling in one direction is the excited wave.
The wave traveling in the other direction can
then only be the result of reflecting from the
end of the spring or guitar string. Is this the
case? Look at Figures 33a and 33b. The wave
traveling to the right (shown in Figure 33a) if
it had not encountered the tied down end at
C, would have produced a negative displace-
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ment a half wavelength to the right of C. For
a reflection, we know that such a pulse has
its displacement reversed at C and is sent back
to the left. This positive pulse traveling to the
left is exactly what is drawn in Figure 32b. As
a result of reflections at B and C, the pulses
shown in Figures 33a and 33b exist simulta-
neously in the region between B and C.

You found in Experiment C-1 that the
time it takes for a pulse to make one
complete round trip along a spring (or guitar
string) is the same as the time for one
complete oscillation of the vibration pattern
corresponding to the first harmonic. You have
also just seen that with our model of two
waves traveling through each other to form
standing waves, each wave travels one wave-
length during the time that the standing wave
makes one complete oscillation. Thus, the
period of the oscillation of the spring is the
same as the time it takes for one of these
waves to move a distance of one wavelength
along the spring.

The model we have created to account
for the fundamental vibration pattern of a
spring (or guitar string) gives results which are
in agreement with experiments you have
conducted only if the wavelength of the
waves traveling back and forth on the spring is
exactly twice the distance between the fixed
ends of the spring:

A=2L (19)
(1st Harmonic)

According to our model, a guitar string
vibration is in its fundamental mode whenever
we have produced waves for which the wave-
length is given by

A=2L

where L is the distance between the fixed
ends of the guitar string (the distance from
the bridge to the nut).



From observations made in Experiment
C-1, and from the model of two traveling
waves, we conclude that a traveling wave
moves along a guitar string a distance of one
wavelength in a time of one period of
oscillation of the string. Because distance
traveled is related to speed and time by the
equation

Distance = speed X time
or
Speed = distance/time

we can write an equation for the speed (v) of
a wave on the guitar string:

v=NT

where 7 is the period of oscillation. This
equation can be rewritten as

vy =A(1/7) (20)
Question 23. Suppose that a guitar string has
a period of 0.01 s per oscillation. What is the

value of the quantity 1/7, and what does this
quantity represent?

In Question 23, the quantity 1/7 is what
we have called the frequency f of oscillation.
In general, the frequency is related to the
period by the equation

f=1r (21)

Replacing 1/7 in Equation (20) by f
from Equation (21), we have the important
relationship:

v=A (22)
Question 24. According to Equation (22),
what happens to the wavelength if we keep
the oscillation frequency fixed, but increase
the speed of the wave in the string? What
happens to the frequency of oscillation if we
decrease the wave speed, but keep the wave-
length unchanged? In a given medium (where
the wave speed is fixed) what happens to the

wavelength if we go to a higher frequency of
oscillation?

For the first harmonic, we know that
A=2L
and from Equation (22),
A =vff

Setting the right sides of each of these
equations for A equal to each other, we have

2L =vy/f

Multiplying both sides of this equation by f
and dividing by 2 L, we get

f=—
2L

(Ist Harmonic)

(23)

Equation (23) is a theoretical equation,
based upon our model, for the frequency of
oscillation of a string of length L. The next
step is to compare this theoretical equation
with the equation determined empirically in
Experiment B-1:

(24)

The equations don’t look much alike, do
they? However, the theoretical equation con-
tains the wave velocity », and until we
discover how v depends on properties of the
string such as 7, m, and L, we cannot expect
the two equations to be identical.

We have called attention to the fact that
any displaced portion of the string returns
to equilibrium more rapidly as the tension
increases. You observed in an experiment
that when the tension of a coiled spring was
increased, the wave speed increased. Also the
wave speed is lower for more massive springs
than for lighter springs. (By ‘“massive” we
mean the mass per unit length.)

Your experience with waves on springs
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and strings, along with the model we have
developed, provides a qualitative relationship
between tension, mass, length, and wave
speed. It is possible to derive a quantitative
relationship between these variables which is
consistent with what you expect qualitatively,
using Newton’s laws of motion. We will not
carry out the derivations here but will simply
assert the result without proof.*

T L
v p—t —_— —
m/L m
Now eliminating v between equations 23 and
25, we obtain

(25)

T

1
r=5/mL

If we use the subscript 1 on f to designate the
first harmonic, this equation becomes

sl [T
12/ mL

(1st Harmonic)

(26)

The theoretical equation (26) and our experi-
mental equation (24) are identical, if we put
K =1/2. Is this value consistent with your
results of Experiment B-1?

It looks as though we may have a good
theory, but there are still questions that need
to be answered. The theory predicts the first
harmonic standing-wave patterns correctly,
but what about higher modes? Figure 37
shows traveling waves with one-half the wave-
length of those shown in Figures 33, 35, and
36. Notice that we have possible nodes at
points B and C, and another midway between
these points.

Problem 14. Sketch the appearance of the
two traveling waves of Figure 37 and their
superposition as they would appear at the
time when each traveling wave has moved
1 A farther. Sketch them again when they
have moved another % A. '

*For a derivation see, for example, Sears & Zemansky,
University Physics, Addison-Wesley Publishing Co.

Question 25. From Figure 37 and the results
of Problem 14, what can you conclude about
the locations of nodes and antinodes from
point B to point C?

The pattern of nodes and antinodes
produced by these two traveling waves is
identical to the second harmonic you saw on
the coiled spring and on the guitar string.
How fast would waves with this wavelength
travel on the string? You showed in Experi-
ment C-1 that the speed of a pulse does not
depend on either the amplitude or the
breadth of the pulse. Equation (25) thus
holds regardless of the wavelength. However,
for the waves shown in Figure 37, one whole
wavelength fits into the length L. Taking this
to be the pattern for the second harmonic,
the condition for the second harmonic
becomes

N\, =L
or, in terms of a half-wavelength:

20\, /2)=L
(2nd Harmonic)

(27)

Since the relationship

vV
=X

is still valid, replacing A by L, and using the
subscript 2 to designate the second harmonic,

fr= Ll (28)

(2nd Harmonic)

Finally, replacing the speed v by its value
given in Equation (25), we have

= L (29)
2 mlL
(2nd Harmonic)
which can be written
fo =21 30)
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These results agree with observations
made during Experiment A-2: the frequency

of the second harmonic is twice the frequency

of the first harmonic.

If we consider the case of two traveling
waves, each with one-third the wavelength of
those we first discussed in Figure 32, we find
that this situation produces a pattern identical
to the third harmonic we observed in the
spring, with three antinodes. The condition
for the third harmonic standing wave is that
three half-wavelengths fit exactly into the
distance L between end points. As an equa-
tion, this condition is:

3(\;/2)=L
Using the same method, we find the
condition for thestanding wave correspond-

ing to the fourth harmonic to be

4\ /2)=1L

Instead of writing a different equation
for each condition, we may summarize these
equations, and those for all the higher-order
harmonics, into one equation. To do this we
notice that the order number N of the
harmonics (1st, 2nd, 3rd, etc.) is the number
of half-wavelengths which must fit into the
distance L between end points. As an equa-
tion, this condition becomes

NQAN/)=L 3D
Problem 15. For a certain guitar, it is 66 cm
from the nut to the bridge along a guitar
string. The fundamental frequency of this
string is 220 Hz. What is the frequency of the
string when there are nodes spaced 22 cm
apart? What is the wavelength of the traveling
waves on this string which give rise to this
mode of oscillation?

You have already seen that the speed of
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a wave on the spring or guitar string is the
same for each harmonic (the subscript N
designates the Nth harmonic),

VN = fNAN

In terms of string tension, mass, and
length, the speed is given by

_ /T
"N T m/L

Setting the right sides of these two
equations equal, and solving for fy, we have

1 T
NV miL

If we now solve Equation (31) for A
(resulting in Ay = 2 L/N) and use this value
for Ay in the preceding equation, we have

N /T
fN‘ﬁ r'n7z
N T
W

Since the fundamental frequency is f; =
(1/2)+/T/mL, this can be written as:

or

(32)

N =Nf (33)
TRAVELING WAVES ON THE SOUND
BOARD

Transverse pulses and waves travel along
the sound board of a guitar, much as they do
along a string. One complicating factor is that
the sound board is a two-dimensional surface;
therefore, waves can travel away from a
source of disturbance in every direction in the
plane of the sound board. When such traveling
waves reach a boundary, such as the edge of
the sound board, they are reflected, and the
reflected waves superpose with the original
waves. The resulting displacement at each

point is determined by the forces produced
by all the waves traveling through that point.
If all these forces were known, the net
displacement could be calculated from the
principle of superposition.

The wave velocity of a traveling wave on
a sound board depends on properties of the
wood, primarily on its elasticity and its
density. It also depends on the frequency. If
we excite a disturbance by causing a local
oscillation at a frequency f, the wavelength of
the traveling waves that move away from the
point of disturbance is given by the equation
A =v/f. If, in a given direction, it turns out
that an integer number of half-wavelengths fit
between two points that must be nodes
(because they are clamped down or because
they are too massive to move rapidly), then
the principle of superposition predicts a
standing wave pattern.

(When the original traveling wave and its
reflection are in phase, producing a wave with
twice the amplitude, the situation is known as
constructive interference. When the two
waves are out of phase, producing zero
displacement, the situation is called destruc-
tive interference.)

If the half-wavelength is such that an
integer number of them does not fit exactly
between two points which must be nodes, the
principle of superposition predicts that no
standing-wave pattern is set up. In this case
very little energy is transferred to the sound
board. The two-dimensional vibrational pat-
terns that can be excited at certain resonant
frequencies on guitar sound boards are inter-
esting. However, the solution of the two-
dimensional problem is complicated.

MIXTURES OF HARMONICS

You have learned how standing waves
can account for the various possible har-
monics or modes of oscillation of a guitar
string. However, we have discussed only sit-
uations where a single harmonic is present at a
time. How can we pluck a guitar string in
different positions, excite different sets of
harmonics, and get the same pitch (that of the



fundamental) but tones of different quality?
Also, how does the pitch change suddenly
when a vibrating string is touched at a certain
point along its length?

It turns out that a plucked string gives
several frequencies of sound at the same
time: the fundamental and several harmonics.
Does this fact mean that the string is vibrating
with several frequencies at once? As a matter
of fact, the string can vibrate with any
number of the permissible standing-wave fre-
quencies at the same time. Each possible
standing wave is called a mode of oscillation.
It is unusual for a plucked string to vibrate
with just one of the simple wave shapes we
have studied so far. A string plucked with a
sharp point like a fingernail or guitar pick
might, at different times, have the shapes
shown in Figure 38.

At A, the string is at its initial displace-
ment. At B, part of the disturbance has
moved to the right, while the other part has
moved to the left. In C, D, and E both

disturbances are moving to the left. In F the
disturbances are moving toward each other,
and in G they are together. For each of these
shapes of the guitar string, there is a set of
harmonics (standing waves on the string),
each with a different amplitude. The algebraic
sum of these amplitudes gives the string shape
at that instant. The nodes of each harmonic
are in the usual positions on the string. But as
the antinodes from the different harmonics
vibrate at their various frequencies, the sum
of all harmonics is the displacement shown in
Figure 38, moving back and forth along the
string. It is surprising that the sum of standing
waves is a shape which is moving, but this is
the case.

A simpler example will further illustrate
this remarkable property of string oscillations.
Figure 39 shows the shape of a guitar string
plucked exactly at its midpoint by a sharp
pick. The displacement is exaggerated to show
the shape of the string.

STRING PLUCKED
AT MIDPOINT

Figure 39,

The harmonics which add together to
make this shape are shown in Figure 40. The
amplitudes are drawn to scale.

Notice that the second, fourth, and sixth
harmonics are missing. Higher odd-numbered
harmonics, such as the ninth and eleventh, are
present, but their amplitudes are small enough
to ignore.

Problem 16. By measuring the displacements
of the standing waves shown in Figure 40
from one fixed end to the other, sketch the
algebraic sum of the first and third harmonics.
How does the shape of this resulting wave
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compare with the shape of the guitar string
shown in Figure 39?7

Question 26. Why is the second harmonic
absent when a guitar string is plucked in the
middle by a sharp pick?

Problem 17. Try adding the fifth harmonic to
the wave form you got in Problem 16. How
does this change the wave form and how does
the new shape compare with that of the
string?

Figure 41 shows the relative amplitudes
of harmonics which are produced when a
string is plucked with a sharp pick one-quarter
of the way from a fixed end. Again the sum
of the amplitudes of the harmonics will give
the original shape. But notice that the ampli-
tudes of the second and third harmonics are
greater than were the third and fifth har-
monics when the string was plucked at its
midpoint. This means that when you pluck
the string at one-quarter the way from an end,
the harmonics produced are louder than those
produced when you pluck the string at the

midpoint. This accounts for the tinniness of
the sound when guitar strings are plucked
near the bridge compared with the sound
produced when the string is plucked at its
midpoint. Electric guitars take advantage of
this property by providing two or three
pickups at different positions beneath the
strings. At positions closer to the bridge, you
can pick up more harmonics which are louder
than at positions farther from the bridge.

The principle that a disturbance of any
shape on a string can be represented by an
algebraic sum of certain harmonics having
certain relative amplitudes is called Fourier’s
Theorem. This theorem has wide application
in acoustics, electronics, light, and anywhere
else where wave motion is involved.

The point at which you pluck a guitar
string cannot be a node because you have
already displaced it. Thus if you know where
a string has been plucked you know a point
on the string which cannot be a node. Thus
you can tell which harmonics are missing.

Example Question. Suppose you strike a

piano string at a single point which is exactly
1/7 of the length of the string from one end

FIRST HARMONIC

SECOND HARMONIC

THIRD HARMONIC

FOURTH HARMONIC

FIFTH HARMONIC

SIXTH HARMONIC

Figure 40.



STRING PLUCKED
I/4 FROM AN END

FIRST HARMONIC
SECOND HARMONIC

THIRD HARMONIC

FOURTH HARMONIC

Figure 41,

of the string. What string modes would you
expect to be missing from the vibration of
this string?

At 1/7 of the way from one end of the
piano string there cannot be a node. If there
were a node at this position, there would be 7
antinodes between the fixed ends of the
string. Thus the 7th harmonic would be
present if a node existed 1/7 of the way from
one end. Because the string is struck at this
point, a node cannot exist there, and the 7th
harmonic must be missing. Since the 14th,
21st, and all other multiples of 7 also would
have a node at this position, these harmonics
must also be missing.

Question 27. A guitar string is plucked 11 ¢cm
from the bridge. If the distance along the
string from the bridge to the nut is 66 cm,
what harmonics are missing? If the funda-
mental frequency of the string is 167 Hz (low
E), what frequencies (called overtones) are

missing from the harmonics of the string?
What are some of the overtones which are
present?

LONGITUDINAL SOUND WAVES IN AIR

Air has elasticity and mass, and thus it
can conduct sound waves. If the air is
confined, as in the sound box of a guitar,
traveling waves can reflect and, by super-
position, produce standing-wave resonances.
However, there is an important difference
between sound waves in air and the waves we

“have discussed thus far. Sound waves in air are

longitudinal, not transverse. This means that
the oscillations of air particles are in the same
direction as the direction of travel of the
wave. Air molecules that are displaced side-
ways do not experience restoring forces that
pull them back, and thus no transverse oscilla-
tions occur in air. However, air is elastic. If
you compress a container of air, the pressure
on the air inside pushes outward; if you
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expand the container of air, the pressure
inside decreases and the larger pressure out-
side pushes inward. Thus air can vibrate
longitudinally.

(Another difference between vibrations
in air columns and vibrations on strings results
from differences in the conditions at the ends.
These are sometimes called boundary condi-
tions.)

A string is normally tied down at both
ends, so the ends are nodes. A tube containing
air, such as an organ pipe, can be either open
or closed at the ends. It is easy to see that a
wave pulse is reflected by a closed end. Air
moves toward the closed end but cannot
move past the end. Thus the pressure at the
end increases until the forces in the direction
opposite to the original motion slow down
the advancing particles, cause them to stop,
and then push them back away from the end.
At a closed end, air particles don’t move, so
the closed end is a node for the motion of
particles. The particles near the end have their
direction of motion reversed, and the re-
flected pulse has a displacement opposite to
that of the original pulse. If one thinks of a
sound wave as an oscillation in pressure,
instead of as an oscillation in the motion of
particles (it is, of course, both), then a closed
end is a place where pressure oscillations are
maximum; that is, an antinode.

The velocity of sound in air at sea level is
between 330 m/s and 340 m/s; it increases
with temperature. At a fixed temperature,
sound waves of all frequencies travel at the
same speed. This speed is not too different
from the speed of transverse waves in a guitar
sound board. This means that the air in the
sound box can have standing waves which
resonate at frequencies that are in the same
general range as the resonant frequencies of
the sound board, since both vibrating struc-
tures have the same dimensions. Instrument
designers over many years, have learned, by
trial and error, to produce instruments for
which the elasticity and thickness of the
wood and the construction of the instrument
are such that sound board, strings, and the air
in the sound box have overlapping resonances.

HARMONY AND MUSICAL SCALES

Why is a guitar designed to produce the
particular musical tones that it does? More
generally, why is any musical instrument
designed to produce the particular tones that
it does? In the broadest sense, the answer to
these questions depends on the answer to a
more basic question. Why do certain combina-
tions and sequences of frequencies sound
pleasing to the ears, while other combinations
and sequences are perceived as unpleasant?
Two or more tones which, in combination,
sound pleasant and in some way “final” to
the ear are said to be consonant. On the other
hand, a combination of tones which is un-
pleasant in the sense that it suggests un-
relieved tension and a feeling of incomplete-
ness is said to be dissonant. Consonance and
dissonance are difficult to describe verbally,
but every musician knows the difference. It is
quite possible that the accepted standards of
consonance and dissonance in music are in the
process of changing.

Learning and experience play an impor-
tant role in whether combinations of notes
sound consonant or dissonant. However, for
trained musicians raised in Western cultures,
frequencies which are most consonant with
each other are found to be in the ratio of
small whole numbers. The smaller the num-
bers, the better the consonance; for example,
tones whose fundamental frequencies are in
the ratio of 3:2 are consonant. A musical
interval is thus defined as the ratio of two
frequencies, rather than the difference. This
discovery of a connection between integer
ratios and consonance was first made by the
ancient Greeks, using tones from stretched
strings. (They actually used ratios of string
lengths, which they could measure, rather
than frequencies, which they couldn’t.)

Table III shows integer ratios (musical
intervals) of frequencies, arranged in order
from the integer ratio containing the smallest
number to the integer ratio containing the
largest number. The name shown next to each
ratio is the musical name of the interval
between the two notes. The intervals are



arranged in order of increasing dissonance.
That is, a minor sixth (8:5) sounds more
dissonant than a minor third (6:5).

The actual frequencies used in music
have varied with time and place, but once a
standard tone is fixed in frequency, the ratios
of Table III fix the frequencies of notes which
are consonant with the first.

Table III. Musical Intervals

Ratio of
Name Frequencies
Unison 1:1
Octave 2:1
Fifth 3:2
Fourth 4:3
Major Second 5:4
Major Sixth 5:3
Minor Third 6:5
Minor Sixth 8:5
Second 9:8

Question 28. Two notes form an octave and a
fifth, respectively, with a given note. What
interval do these notes form with each other?

By a 1939 international agreement, the
frequency of the note A above middle C is
fixed at 440 Hz. This choice, along with the
intervals, gives rise to the diatonic scale shown
in Table IV. Each frequency of the scale is
consonant either with middle C or with a note
consonant with middle C. For example G is
consonant with C (ratio of 3:2), but D is not.
However, G and D are consonant (ratio of
4:3).

Problem 18. Find the interval which each
note in the diatonic scale forms with middle
C. Which of these are most consonant? Which
are least consonant?

Many theories have tried to explain why
tones whose fundamental frequencies are in

Table IV. The Diatonic Scale

Note Frequency

264 Hz
297
330
352
396
440
495
528

~-

aQwrOTmmon

the ratio of small whole numbers sound
“right” together while others don’t. The
theory based on beat frequencies between
overtones, due to Hermann L. F. von Helm-
holtz (1821—-1894), has been fairly success-
ful, but it probably is not strictly correct.

Beat frequencies are the low frequencies
that you hear as you bring two frequencies
closer and closer together. The beat frequency
between two frequencies, f; and f,, is their
difference,

Af=f, - hfi

- For example, the beat frequency between a

340-Hz tone and a 320-Hz tone is 20 Hz. When
comparing two tones, one says that the tones
have the same pitch if the beat frequency is
very small or zero. (You can hear a beat
frequency by doing the following: slightly
detune the sixth string of a guitar so that the
pitch produced while pressing it at the fifth
fret is slightly different than the open-string
pitch of the fifth string (A). Then, holding
down the sixth string at the fifth fret and
leaving the fifth string open, strongly pluck
both strings simultaneously. The alternately
loud and soft sound you hear is the beat
frequency. Experiment with changing the
beat frequency.)

In Helmholtz’ view, dissonance is due to
rapid beats between the overtones of musical
sounds. When two tones have fundamental
frequencies in the ratio of small integers,
many of their harmonics coincide. They do
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not produce so many distracting beats and do
not sound dissonant. For example, consider D
and C of the diatonic scale, which are in the
ratio 9:8. When these notes are sounded on

two different guitar strings, the fundamentals.

differ by 33 Hz, which is in the harshest
region of beat frequencies. D is in the scale,
not because of any consonance with C, but
rather, as we have already pointed out,
because G forms a perfect fourth (ratio of
4:3) with D, and G in turn forms a perfect
fifth (ratio of 3:2) with C.

A more pertinent example might be two
strings with fundamental frequencies of
380 Hz and 264 Hz. These frequencies are in
the ratio of 95:66. A ratio of 99:66 would be
a fifth. Why do these two strings sound
dissonant? The fundamentals are far enough
apart so that they don’t produce a noticeable
beat. However, the second harmonic of
380 Hz (2 X380= 760 Hz) and the third
harmonic of 264 Hz (3 X 264 = 792 Hz) pro-
duce a beat frequency of 792 - 760 = 32 Hz,
which does produce a sensation of dissonance.
In contrast, every second harmonic of G
(which forms a perfect fifth with C) coincides
exactly with every third harmonic of C, as
indicated in Table V. When the harmonics do
differ, it is always by a multiple of 132. Thus
there are no harmonics which give beats at a
frequency of less than 132 Hz, and this does
not sound dissonant.

(You should realize that, as we have
already hinted, consonance and dissonance, as
well as the structure of musical scales, are
strongly influenced by culture. These intervals
and scales have evolved at least partially
because of what has been considered in
Western culture to be music. In Oriental
cultures, very different [more complex]
scales have developed, and different ideas of
dissonance and consonance are held.)

A guitar tuned to produce the fre-
quencies on the diatonic scale is said to be
tuned in just intonation. The open strings of a
guitar tuned to the diatonic scale would have
notes corresponding to frequencies listed in
Table VI (notes in octaves below middle C are
indicated by multiple letters, while those in
octaves above are written with primes). These
notes are in the diatonic scale of C, but they

Table V. Comparison of the Harmonics

of Cand G
C G
fi = 264Hz fi'= 396 Hz
f, = 528Hz
fz= 792Hz f2' = 792 Hz
f. = 1320 Hz fs z
fe = 1584 Hz fi' =1584 Hz

Table VI. Open Guitar String Frequencies

Note Frequencies (Hz)
EE 165
AA 220
D 297
-G 396
B 495
E 660

are spread through two octaves in order to
give an appropriate range. The other notes are
obtained by stopping the strings at frets.

When notes whose frequencies are re-
lated to one another by certain simple ratios
are played at the same time on a piano, they
sound harmonious. One set of three notes is
called the tonic chord of the key of C major.
It consists of three white piano keys, C, E,
and G. These notes have fundamental fre-
quencies of 264 Hz, 330 Hz, and 396 Hz,
which are in the proportion 4:5:6. On a
piano, two keys that are one octave apart are
separated by eleven other keys. If the piano
were tuned to produce perfect harmonies in
certain chords, such as those for the key of C
major, the frequency ratio between two adja-
cent keys would vary from pair to pair along
the keyboard. This would make the piano
sound fine for songs written so as to empha-
size those particular chords (for example, in
the key of C and F), but not so harmonious if
other chord structures are emphasized (asin a
song written in the key of D sharp).



Another problem is that pianos fre-
quently accompany other instruments, and if
instruments using some other system are to
sound harmonious when played together with
the piano, some compromise must be made.
For example, a violin can play the notes for
any chord, since the length of string vibrating
can be varied continuously. However, a piano
has only a fixed number of notes, as does a
stringed instrument with frets, like a guitar.
The simplest compromise, and one that has
been adopted by virtually all musicians in the
Western world, is to make the frequency ratio
between every two adjacent notes the same. A
scale constructed this way is called an equally
tempered scale. Since there are twelve differ-
ent notes per octave, there are twelve ratios
between the notes in one octave. If these
ratios are all equal to each other, as required
for an even-tempered scale, we can represent
the constant ratio with the symbol R. Know-
ledge of the frequency of the beginning note
in an octave allows us to find the frequency
of the next note by multiplying by R. Thus if
fo is the frequency of the beginning note,
fo * R is the frequency of the first note above
the beginning note of the octave. The fre-
quency of the second note above is found by
multiplying the frequency of the first note by
the ratio R. Thus the second note frequency
is

JoRXR =f,R*

In a similar way, the frequency of the third
note above the beginning note is

foR? X R =f,R?

By repeated calculations like these, we find
that the 12th note above the beginning note
has a frequency given by

foR'?
If we now form the ratio of the frequency of

the 12th note to that of the beginning note,
we have

foR? [fo

But this ratio reduces to just R'Z. You
already know that the frequency ratio of the
12th note to that of the beginning note must
be 2 to 1 (which has a value of 2), since the
notes are an octave apart. Therefore

R12=2

This equation can be solved by taking
the 12th root of both sides, with the result
that

R=Y2

12A nine-place electronic calculator gives,
for \/Z the value 1.059463094. Thus, as a
sufficiently precise approximation,

R =1.05946

To build a scale using this ratio, we must
agree on the frequency of one note. By
agreement that note is called concert A, and is
always set at 440 Hz. Table VII shows the
frequencies of the thirteen notes from middle
C to C' an octave higher. The frequencies of
notes in the. equally tempered octave are
slightly lower than the frequencies of the cor-
responding notes on the diatonic scale des-
cribed earlier, but the differences are less than
1% and cannot be detected by most humans.
Note also that the frequency ratio between G
and C, for example, which was 3 to 2 or
1.500 for the diatonic scale, comes out to be
1.498 for the equally tempered scale. Ratios
like this one are close enough to ratios of small
integers that their notes still sound consonant.

Problem 19. Calculate the ratio between fre-
quencies of E and F and between those of B
and C' on the diatonic scale shown in Table
IV. How do these ratios compare? Why can’t
this ratio be used between each of the twelve
notes in an octave on the piano?

In a symphony orchestra, most musi-
cians tune their instruments so that they
conform to the oboe. You have undoubtedly
heard this take place while an orchestra is
warming up. For stringed instruments, all that
is required is that the fundamental of each
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Table VII.

Key Symbol Frequency
C (white key) 261.6
C# (black key) 277.2
D (white key) 293.7
D# (black key) 311.1
E (white key) 329.6
F (white key) 349.2
F# (black key) 370.0
G (white key) 392.0
G# (black key) 415.3
A (white key) 440.0
A## (black key) 466.2
B (white key) 493.9
C (white key) 5233

open (unshortened) string should have the
same pitch as the corresponding note on the
oboe. Experienced musicians then know
where to put their fingers in order to produce
any other desired note. However, the frets on
a guitar provide a fixed number of places
(frets) to put your fingers, which constitute a

scale. It is not necessarily true, however, that
the notes of this scale correspond in a
one-to-one way with the notes on a piano.
The guitar builder may have chosen a differ-
ent scheme, or perhaps simply failed to
achieve fret positions that would produce the
intended sequence. If the guitar were tuned so
that each open string note had the same
frequency as the corresponding key on a
piano tuned to the equally tempered scale,
the open string guitar frequencies would be
as follows:

Note Frequencies (Hz)
EE 164.8
AA 220.0
D 293.7
G 392.0
B 493.9
E' 659.3

In Experiment C-2, you will have an oppor-
tunity to find out for yourself what scale has
been used on the guitar.



EXPERIMENT C-2.

All you need to do this experiment is a
guitar and a good meter stick. Measure the
distance between the bridge and each fret.
Number the frets, starting with 1 for the fret
nearest the nut. Fill in the blanks on Table
VIII. The column of distances represents the
data from this experiment. Assume that the A
string of the guitar is tuned to 220 Hz. This is
the frequency of the fundamental of the tone
made by this string when it is not touched, or
stopped, anywhere. Other entries in this
column can be calculated from Equation (3):

\
Il
~la

Since fy = C/L,, where L, is the full length
of the string, fiy = (Lo/LN) fo, where N=1,
2,3,...

Now answer these questions:

1. Is the scale on your guitar an equally
tempered scale? That is, are all the ratios
in the last column equal or nearly equal?

2. Are any or all of these ratios equal or
nearly equal to the ratio between the
frequencies of two adjacent piano keys
(1.0595)?

Guitar Scales

3. Could you play the note A one octave
higher by stopping the A string at a fret?
Which fret? At what distance along the
string is this fret located?

4. How many notes are there to an octave?

That is, how many frets are there be-
tween the nut and the midpoint, count-
ing the one at the midpoint?

5. Is there a fret at the node closest to the
nut for the third-harmonic vibration?
For the fourth-harmonic vibration? For
the ninth-harmonic vibration? If SO,
which frets are these?

6. Based on your data, would you predict
that the tones made in the following
ways are one octave apart?

a. Hold the A string down at fret 1
and strum the string at its mid-
point.

b. Hold the A string at fret 13, and
strum the midpoint of the remain-
ing string (toward the bridge).

Test your prediction by holding the A
string down at the two frets described in
Question 6 and comparing the sounds.
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Table VIII.

Fret No.

Distance from
Fret to Bridge
(in cm)

Frequency of a
String Stopped
at Fret (in Hz)

Ratio of This Frequency
to Previous Frequency
(Round to 3 Figures)

0 (open)

220 (f5)

1

2
3
4
5
6
7
8
9
0

1

11

12

13

14

15

16

17

18

19

20




SUMMARY

The six different open strings of the
guitar produce six different pitches. The
thicker strings produce lower frequencies
because their mass per unit length is greater.
To tune the guitar to the proper frequency
the tension of the strings is changed by using
the tuning pegs. Increasing the tension in-
creases the pitch. The relative proportions of
the sound-wave harmonics are determined by
the material of the strings, the natural fre-
quencies of the sound board and cavity, and
the method of plucking. These variables
account for the differences in sound quality
obtainable.

When playing the guitar, the effective
lengths of the strings are altered by holding
them down against frets, which changes their
fundamental frequencies.

In this section you have learned a theory
that two waves traveling in opposite directions
can superimpose to produce standing waves.
The condition required for standing waves on
strings fixed at both ends is

NQw/2) =L

where N is an integer, Ay is wavelength, and L
is the length of the string. This equation says
that if you can fit N half-wavelengths in a
length L, you will have standing waves.

Using this theory, we could derive an
equation which accounts for the string equa-
tion determined empirically in Section B:

f=K

mL

You also learned that mixtures of har-
monics are present on a vibrating string
because these harmonics must add up to give
the shape of the string at any given time. This
effect accounts for the different amplitudes
of harmonics for different positions at which
a string is plucked, and for the different ways
it is plucked (with thumb or pick).

Each mode of vibration receives a certain
amount of energy when a string is plucked,
and each mode has its own life history,
independent of the others. Some string modes
die out more quickly than others, and some
transmit their energy more readily to the air
through the bridge and guitar body, but no
energy is exchanged between modes. Each
string may be thought of as a number of
independent oscillating systems, each with its
own separate single frequency.

Finally, you learned that harmony was
related to ratios of fundamental frequencies
of tones, and that musical scales could be
constructed to produce harmonics. You
found that the guitar is constructed to pro-
duce an equally tempered scale the same as a
piano tuned to that note.
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Name

Work Sheet
EXPERIMENT A-1

10.

11.

12.

13.
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14.

15.

16.




Work Sheet

EXPERIMENT A-2

Name
i 13.

14,
2.

15.
3 i6.
4.

17.
5 18.

19.
7.

20.

21.

22.
8.

23.
9.
10.

24.
11.

12. 25.
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26.

27.

28.




Work Sheet
EXPERIMENT B-1

Name
1-10.
7= N Table 1. _ m
Frequency Total Total Mass (kg) Vibrating
String (Hz) Mass (kg) Length (m) Length (m) Mass (kg)

low E

A

D

G

B

high E

11-13. 14-15.
Table 2. Table 3
m=____ kg L=___ m T= N m/L = kg/m
m/L=___ ___ kg/m
Frequency (Hz) Tension (N) Frequency (Hz) Length (m)

1 kg
2kg
3kg
4 kg
Skg
6 kg
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.




Work Sheet

EXPERIMENT B-2

Meter Reading (dB)

Name Part 11
Part 1 1.
1.
2. fpg (Hz) =
faa (Hz) =
2. fe Hz)=
f3 (Hz) =
3 fg' (Hz) =
3.
4. 4.  Frequency (Hz)
S.
6.
7.
8.
9.
10.
5.
6.
11.
7.
8.
12.
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COMPUTATION SHEET



Work Sheet
EXPERIMENT C-1

Name
1 8.
2.
3 9.
4.

10.
5.

11.
6.

12.
7.

13.
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COMPUTATION SHEET



Name

Work Sheet
EXPERIMENT C-2
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