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PREFACE
About The Physics Of Technology Modules:

The physics of Techno- you can do to test whether
logy modules provide a you have achieved the ob-
course in experimental phy- jective.
sics primarily for the . .
t h' 1 t d t Th ppepequ~s~tes to the moduleec n1ca s u en. e , d' th k'll dmethods of presentation 1n 1cate e s 7 s an ,, knowledge you w111 use 1ntherefore d1ffer from those th d 1 b t 'II t bof standard materials. This ,e mo u e, u ,W1 no e

f h' hI' ht f d1scussed. Lack1ng one orpre ace 19 19 s some 0 f dthe features of the module two 0 these sho~l not pre-
so that you can use it ef- vent rou from d01ng the mod-
f t' 1 d ff' 'tl ule S1nce they can be learn-ec 1ve y an e 1C1en y. ed as you go along. However,

if you lack more than that
you might begin with another
module whose prerequisites
you have or take time out to
learn the missing ones.

,
THE TITLE:

Each PoT module is centered
on a device or system that
is familiar to you or that
you may meet in a later work
situation. The operation of
the device will generally
depend on some area of phy-
sics that is relevant to
the technology involved.
This area of physiqs is
listed in a secondary title
for the module.

THE INTRODUCTION:
A brief introduction ex-
plains why we have chosen
this particular device and
what principles of physics
we expect you to learn from
it. Several examples are
given to show why these
principles are important
and where else you may en-
counter them.
Objectives are then given
for the module. These in-
clude a general discussion
of the goals of the module
as well as specific things
you should be able to do to
demonstrate that you have
achieved these goals. After
each objective is listed
the pages in the text where
it is discussed, and Ppo-
bZems and Questions that

THE THREE PARTS:
The module is divided into
three self-contained parts.
Each part is designed to be
completed in about one week's
time.

PART I is usually devoted
to familiarizing you with
the device, the instpumen-
tation you will use to
measure its performance,
and the tepms that describe
its characteristics. Often
this will mean learning how
to use a new measuring in-
strument or transducer.

PART II generally focuses
on an experiment involving
some specific behavior of
the device. The laboratory
instructions are explicit
as to experimental proce-
dures. They tell you in
detail how to take, graph,
and analyze the data. This
is to familiarize you with
the expepimentaZ methods in-
volved with this area of
physics.



PART III generally will in-
volve doing some additional
studies of the behavior of
the device. You will use
the instrumentation learned
in the first week and the
methods of data taking and
analysis learned in the
second week.

THE ROLE OF THE LABORATORY:·
Since this is primarily a
p~ogram in experimental
physics, the material empha-
sizes the experimental
activities. A short intro-
duction will orient you to
the experiment you will do,
and to the important phy-
sics principles or skills
that you should learn. The
experiment, including the
set-up and data taking pro-
cedures, then follows im-
mediately.

The principal experi-
ment is often preceded by
some simple ones. These
are included to give you
a feel for what you will be
doing in the main experi-
ment. They generally can be
done quickly and do not re-
quire extensive data taking.
The principal experiment,
however, should be done
carefully since the remain-
der of the material will dis-
cuss this data.

Once your experimental
work has been completed and
all of your data taken, you
can leave the laboratory.
The remainder of the mater-
ial is devoted to helping
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you graph and analyze your
data while explaining the
physics involved. This work
can be done either as home-
work or in class with your
instructor. Tear out pages
for data and graphs are pro-
vided in the module as they
are needed.

In reading the mater-
ial be sure to keep in mind
the module objectives. Al-
though the material gener-
ally goes beyond what is
needed to achieve them, your
test at the end of the mod-
ule will be on those objec-
tives.

FinaZZy~ the module has
been designed to provide
you with an understanding
of physics that will be
useful to you. Within the
text you will find conver-
sion table, methods for
calibrating transducers,
explanations of physical
terms, comparisons of ways
to measure a physical
parameter, and so on.
These could be of use to
you sometime and you may
want to tear them out to
keep as reference material.

I hope that the
material in these Physics
of Technology modules will
provide you with the skills
of experimental science and
insight into the physical
prinicples underlying your
technical field.

John W. McWane
Project Director
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INTRODUCTION

In this module you are go-
ing to study the electric fan
because it can be used to illus-
trate some important principles
of physics. We all have used
fans to stir up a breeze and
help us keep coolon a hot day.
But in this module you will not
study air motion or the action
of the fan blades. Instead, lour

interest is in rotation -
the behavior of spinning
bodies, automobile tires,
gyros, and many other rotat-
ing objects. We will use the
electric fan because it is
inexpensive, convenient to
instrument and its rota--
tional speed can be easi-
ly controlled.

IBallIKe Wheels Quickly,-bsily~-Accurateli with this
Heavy-Duty Precision WHEEL BALANCER

Fot All Can, Including Compact., St.tion Wagons and Imported Cars
Ruggedly built. precision accurate balancer has
large self-centering ta~ered sliding spider. Cen-
ters any size wheel,_ even wt'-eels with out·of-
round center holes, Instantly and automatically
without adjustment by tl'-e operator, Ideal for
balancing wheels when changing to or from
snow tires, when installing new tires. Built-in
circular spirit level jnsures precise wheel bll-
anee. Free moving bubble checks wheel balance
in all directions. Free-swing pendulum assures
maxjmum sensitivity of balance. Built-in fea-

i~:::rj~~I~d~~a~r~;d6a:~CaT=~11Wa~e:'xtSr~P~~~~
B.I.nced Wheel. . . stand. Approx. '2" high. Strong welded steel
1. Giye a .a'er, .",ooth~ construction throughout. Guaranteed against all
er more com'ort.ble defects in workmanship and materials-will be
ride. repaired or a.choln.ed only. Cannot be ,.tumed

'or credit or ""und. Fits all cars except Porsche,
2. Help prevent front Peugeot, Renault, Volkswagen, and other Car$"
end we.r and dam•• e. with closed center wheel hubs. Can be used on

Volkswagen, 58ab, and other imported cars with
3. Reduce une".n tire large center holes by addino wheel balancer

~::' - incre •••. tire ~~~~~~~~~ep~~~; 9 Ibs..... Each $22.45

[AJ- ...:~~
~=...::;,;..::?:-

Counter Weights
for balance" \

Balancing Automobile
Wheels: Automobile wheels
need to be properly bal-
anced. The machine shown
is a static balancer,
which means that the
wheels will be in balance
as they stand or at low
speeds. Usually this is
adequate. Sometimes, how-
ever, wheels may be stat-
ically balanced, but out
of balance dynamically,
that is unbalanced at high
rotational speeds.

Balancing Crankshafts:
Automobile engine crank-
shafts must be dynamically
balanced with great care.
The crescent shaped pieces
opposite are counterweights,
carefully located and of
just the right mass. Dynam-
ic balance is attained by
the placement of weights
all along the crankshaft.
Unbalance in a modern, high-
speed engine could quickly
destroy it.



Storing of Energy: The fly-
wheel shown (finned to act
as a cooling fan) is bolted
onto the end of a lawn mower
engine crankshaft. Flywheels
are particularly important
in one cylinder engines like
this since there is only one
power impulse in every two
revolutions. The flywheel
stores the energy of the
power stroke until the next
one occurs. This stored
energy keeps the engine and
its parts moving smoothly
and at a steady angular
speed.

~

S••P1.-ston .~ Flywheel

)

~@i !.-inne~ for
Cool1.-ng

~ Balance On
~~ Crankshaft

PART I THE DESCRIPTION OF
ROTATION: KINEMATICS. Kine-
matics is concerned with how
motions take place: how
fast? where? when? Rotation-
al kinematics is described
by angular speed, such as
the rpm of an engine, and by
the angle turned, such as
when a building crane swings
from one position to another.
Often the relation between
straight line motion and
rotation is what counts. For
example an automobile odo-
meter reads distance travel-
ed as the wheels turn. In
Part I of this module you
will study the behavior of
the electric fan to learn
about its rotational kine-
matics.

PART II THE CAUSES OF
ROTATION: DYNAMICS. Dynam-
ics tries to answer such
questions as: what caused a
wheel to slow down? how much
torque can an engine exert?
why do gasoline engines need

flywheels and how should
they be made? Our main
concern in Part II will be
with the torques that cause
changes in rotation, and
with the rotating behavior
of bodies of various sizes
and shapes.

PART III STATIC AND
DYNAMIC BALANCE. Balance
means much more than just
two kids at either end of a
see saw. The principles of
balance tell how an automo-
bile engine crankshaft must
be built, if the engine is
to run smoothly and not vi-
brate excessively. Every
turning wheel must meet the
special conditions called
dynamic balance or great
strain will be put on the
shaft and perhaps the bear·'
ings will be destroyed. In
Part III you will learn the
the difference between sta-
tic and dynamic balance and
methods for achieving them
for a rotating body.



The general goal of this
module is to give you an un-
derstanding of the important
features of rotational motion.
You will see how these princi-
ples are applied in real rota-
ting devices.

This involves a knowledge

The kinematics of ro-
tation; that is, the
description of angu-
lar motion in terms of
angles, angular speed,
and their relation to
linear motion.

Instruments used in
observing and measur-
ing rotational motion
such as tachometers,
revolution counters,
and stroboscopes.

The dynamics of ro-
tation: including
the relation be-
tween torque, mo-
ment of inertia, and
change of angular
speed.

Static and dynamic
balance, and methods
of statically and
dynamically balanc-
ing a rotating body.

At the end of this module
you should be able to demonstr-
ate your understanding of its
objectives by doing the follow-
ing:

(PART I)
1. Explain how to use a stro-

boscope to measure angular
speed.

2. Use a stroboscope to make
a calibration graph for a
tachometer generator.

3. Make a graph of angular
speed against time and
use the area under the
curve to calculate the
total number of revolu-
tions.

Pages·
Where

Discussed

Problems
and

Questions

Q - 1
P - 1

Q - 2
P - 2,3



4. Use the angle turned to
calculate the linear dis-
tance moved by a point on
a rigid body.

5. Use the common units of
angle measure, degrees
and radians, in calcula-
tions and explain why
radian measure is often
preferred.

(PART U)

6. Explain the concept of
torque, including stal-
ling torque and dynamic
torque.

7. Explain moment of inertia,
I, and calculate it for
bodies of various shapes.

8. Use the basic rotational
dynamic equation:

6wT = I6t
to analyze changes in ro-
tational motion.

9. Use the dynamic equation
to determine the moment of
inertia, I, of a rotating
body from its behavior
under constant torque.

10. Explain the purpose and
design of flywheels in
terms of rotational
kinetic energy.

(PART m)
11. Statically balance a rotor

when provided with a simple
balancing machine.

Pages
Where

Discussed

Problems
and

Questions

Q - 3,4
P - 4,5,6

7 &. 8

Q - 1,4
P - 1,2

Q - 2,4,5
P - 3,4

Q - 4
P - 5,6,7

Q - 2,5
P - 5,8

Q - 1
P - 1



Pages Problems
Where and

Discussed Questions

12. Dynamically balance a 60,61
simple rotor using a dy-
namic balancing table.

13. Describe static balance 63,65,66 Q - 2
in terms of center of P - 2
mass.

14. Explain reaction force 63,65,68 Q - 3,4
and calculate its magni- P - 3,4
tude.

15. Describe dynamic unbalance 68 Q - 5
in terms of reaction force P - 5
and wobble torque.

Before begining this
module you should already
have the following skills,
since they will be used, but
not described, in the module:

1. graphing data on lin-
ear graph paper;

2. using scientific nota-
tion;

3. solving simple alge-
braic equations;

4. reading meters and
using a stop watch;

5. using elementary geo-
metry; measuring ang-
les and finding areas
of rectangles and tri-
angles;

6. using the idea of rate;
distance or revolution,
or some other quantity
per unit time.

If you are unsure
whether you have these
prerequisites, ask your
instructor to give you
a prerequisites test.

If you find you do
not have a certain pre-
requisite, ask your in-
structor to give you
material to help you
learn the needed skill;
or have someone help you
learn it as you need it
in the module.
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PART I

ROTATIONAL KINEMATICS

In this module, we want
to talk about rotation in a

,useful way, and that means
in a quantitative way. That
is, we must describe rotation
using numbers; measurements
that tell how fast, how far,

The performance of a re-
cord player turntable is mea-.
sured by its ability to ro-
tate. It must also maintain
this rate regardless of the
number of records it must
turn. The rate of rotation is
33-1/3 revolutions per minute
(rpm). Angular speeds are ex-
pressed as the number of re-
volutions (or the angle turn-
ed) per unit time.

All points on a record
(or any rotating rigid body)

move at the same angular
speed. When the body has
turned through one revolu-
tion, all points on it have
also turned through one re-
volution.

But what about the lin-
ear speed of the points? Lin-
ear speed means the linear
distance traveled per unit
time, for example inches per
second. A point near the edge
of a record covers a much
greater linear distance in
one revolution than a point
near the center. For example,
the needle on the record
moves along the grooves at
the linear speed. When the
needle is in a groove out

how much a rotating body has
moved.

The first part of the
module is concerned with ex-
plaining the definitions of
these quantities, and how
they are measured.

hll points move at
same angular speed

but linear speed de-
pends on the distance
from center.



near the edge, its linear
speed is about 20 inches per
second, while near the center,
it is only about 7 inches per
second even though the angu-
lar speed is constant at
33-1/3 rpm.

This notion is particu-

larly important for airplane
propellors since it sets an
upper limit to its diameter
for a given rpm. If the dia-
meter is too great, the lin-
ear speed of a point on the
tip may exceed the speed of
sound with disastrous re-
sults.

With many rotating devic-
es, it is essential to know
the anglular speed at all
times. The engines of ships
and aircraft and high perfor-
mance cars must be operated
within a certain range of

Electronic Tachometers:
Most automobile and boat
tachometers are now operat-
ed by electrical pulses
from the ignition system.
An electronic circuit
counts the number of pulses
per minute and displays the
count in-rpm on a meter
dial.
Vibration Tachometers: Vi-
bration tachs are metal
strips (called reeds) that
vibrate strongly at a par-
ticular rate of vibration.
Such tachs are often used
for extreme ley accurate
measurements over a very
narrow range. For example,
portable electric genera-
tors must be operated at
just the right angular speed
to give a.c. voltage of 60
cycles per second. A vibra-
tion tach is usually built
into such a generator. You
will see how these vibrating
reed tachs work in your ex-
periment.

angular speeds. Electric gen-
erators must turn at precise-
ly the right speed. Angular
speeds are measured by in~
struments called tachometers3

or tachs for short.

'31.4" 21r •••• ..swEO"
TRAIISISTORIZED

TACH

• Precision (HO,OOO RPM Scale
• For 4, 6, or 8 Cylinder

J.G. BIDDLE "Frahm" 4999GS
• 3-1/2" ROImd Panel Mount
Range: 400-440 cps.
Input: 105-150.VAC
11 Vibrating Reeds: 4 cps increments

S995



The Tachometer Generator: A
dc electric generator can be
made into a tachometer. The
armature of a dc generator
is a coil of wire wound on an
iron core. It rotates in the
magnetic field of a magnet. As
the armature turns an electric
voltage is produced in the
wires which depends on the
speed of rotation. This vol-
tage can be a linear function
of its angular speed. That is,
the voltage measured on the
coil is directly proportional
to its speed of rotation. If
the generator is attached to

some rotating device, its out~
put voltage will then indicate
the angular speed of the de-
vice.

A dc motor has the same
basic design as a dc generator.
If its armature is rotated, a
voltage will be generated at
the motor terminals that de-
pends on the angular speed of
rotation. In the first experi~
ment you will convert a simple
dc motor into a tach generator.
Later you will use it to mea-
sure the dynamic behavior of
the fan.

DC PM TACHOMETER GENERATORS
TYPE

BYLM
FYLM

FRAME MOMENTS
SIZE OF INERTIA

HYLM 4----- 8.32 x 10.3 Ib-in2

BYLM 7--- 12.53x 10-' Ib-in'

BYLM 9--- 17.97x 10" lb·in'

BYLM BYLM BYLM FYLM FYLM FYLM
TYPE NUMBERS 43820·XX* 73820-XX* 93820·XX* 23920-XX* 43920-XX* 73920-XX*

Rated outputs (open circuit). 6 volts 12 volts 24 volts 3 volts 5 volts 10 volts
Note: Consult factory if application per per per per per per
exceeds 100 volts or 7000 rpm. 1000 rpm 1000 rpm 1000 rpm 1000 rpm 1000 rpm 1000 rpm

Rated output tolerance. Calibrated within ± 1% in specified direction of rotation.

I
Outputs in opposite directions will be equal to each other within 2%.

Linearity error
Per definition (1) above:

± 0.5 % of output at 7000 rpm or ± 0.5 volts, whichever is smaller.
(above 500 rpm) Per definition (2) above: ± 1% between 500 and 10,000.

rms ripple voltage. 3% ma,ximum above 100 rpm. 3% maximum above 100 rpm

Nominal armature resistance of gen-
80 ohms 110 ohms 160 ohms 70 ohms 90 ohms 130 ohmsera tor having outputs quoted above.

Ambient temperature range. --65°F to +200°F -65°F to +2oo°F

PRICE EACH S 92.70 101.30 107.50 79.10 79.10 81.50

How do you determine the
rpm corresponding to a partic-
ular voltage of a tach genera-
tor? Finding the relation is
an example of the process
called caZibration. Thus we
need some device whose angular
speed we know, or another pre-

viously calibrated tachometer
to compare it with. For your
experiment you will use a
stroboscope as the caZibration
standard for such a comparison.
The stroboscope is still an-
other type of device for mea-
suring angular speed.



THE STROBOSCOPE

The stroboscope, or
strobe, is an extremely use-
ful tool because it provides
a way of observing any kind
of repeating motion as though
it were stopped. It does this
without making any connection
to the moving object. An elec-
tronic strobe circuit produc-
es very short and very bright
flashes of light at regular
intervals. A short flash is
important because the object
must move very little while
the light is on; otherwise the
image would be blurred.

The strobe is adjusted so
that the time between flashes

Rotating
grinder
(1700 r~vmln

~~

When the flash rate exaatly
equals the rotational rate~ the
wheel is in the same position
eaah time the light flashes on.
Your eye only sees the wheel
in that position and you think
it has stopped there.

is exactly equal to one per-
iod of the object's motion,
for example the time for one
rotation. In this way, a
point on the rotator is only
"seen" at one place and ap-
pears "stopped" at that place.

Stroboscopes are widely
used in industry to observe
otherwise invisible details
of the motion of high speed
machinery. A simple kind
os strobe is used, for ex-
ample, to stop the motion
of automobile engines in or-
der to properly adjust the
ignition.

lamp (1700 fl.ashes)
mlnute

Calibrated
dial controls

flash rate

A strobe can be quite ac-
curately calibrated electronic-
ally and thus is often used as
a standard for calibrating
other kinds of tachometers.
Strobe dials are generally
marked in rpm so that the dial
setting that stops the motion
gives the angular speed of the
rotating device. This is par-
ticularly useful if the angu-
lar speed is constant.

If the speed is changing
rapidly, however, the strobe
will not keep pace with it.
Then tachometers that read con-
tinuously are required. In the
experiment you will use the
strobe as a standard to cali-
brate the tach generator when
the fan is rotating at con-
stant speed. The tach will
then be used to measure the
speed when it changes rapidly.



In using a stroboscope
the first step is to make
some easily distinguishable
reference mark on the rotat-
ing system. A scratch, a
paint spot, a nut, or any
other similar mark will serve,
but it is essential that it
be the only mark of its kind.

When the system is rotat-
ing, the goal is to increase
the strobe rate until that
mark appears to be stopped and
not rotating. It is worth not-
ing that this stopped image
may appear so real that you
may actually believe it is not
rotating. However, do not stick
your finger in the system to
see if it is rotating. Instead
change the strobe rate to see

OBSERVATION
DIM: too low

if the mark moves.
There is more than one

rate that appears to stop the
motion. Rates that are frac-
tions of the real rate will
appear to stop the motion and
multiples of the rate may stop
the mark, which will appear
superimposed on other marks.
Can you figure out why? Thus
we state:
THE BASIC RULE: The true rota-
tional rate is the highest
strobe rate that stops the mo-
tion of the reference mark and
only the reference mark.

The illustration below
shows what you might see with
a rotating disk when the mo-
tion is stopped.

The motion is stopped, but the
strobe rate is not correctly matched to
the angular speed. If the strobe rate is
half the angular speed, then the rotator
makes exactly two revs between flashes.
You would still see the motion as stop-
ped, but the reference spot would be dim.

There is just one revolution in the
time between flashes and one image of the
reference mark. Test your strobe rate by
doubling it: if two images appear, you
were right on; go back to the previous
rate.

The time between flashes is not long
enough for a complete revolution. For ex-
ample, if the strobe rate is three times
the angular speed, there is 1/3 revolu-
tion between flashes. Three images of the
reference spot appear in different places.



The Fan should be vertically
positioned on a flat surface
and plugged into the variable
voltage supply. The fan
switch should be turned to
HIGH. The fan blade should be
firmly mounted to the motor.
Make an easily visible refer-
ence mark on the hub.
The Variable Voltage Supply
should be plugged into a 110
volt outlet. Changing the vol-
tage supplied to the fan will
change its rotational speed.
The Strobe should be posi-
tioned so it will shine on
your reference mark on the
hub. The room light should be
lowered so that the strobe
flashes show up brightly.
The Tach Generator is mounted
on the front screen and cou-
pled to the fan shaft by a

rubber sleeve. Be sure this
coupling is firmly seated
and will not slip.
The Digital Counter is gear-
ed to the tach generator and
records directly the number
of revolutions of the fan
blade.
The Meter should be a dc
voltage meter with a range
from 0 to 1 volt. Connect
the meter to the output
terminals of the tach gen-
erator.



THREE SIMPLE EXPERIMENTS
LEARNING TO USE THE STROBE:

PROCEDURE:
1) Turn on the poLt~~e

suppLy and increase the vol-
tage to a maximum so that the
fan blades are turning at top
speed. Note the voltage pro-
duced by the generator.

2) Turn on the strobe
and set it to read about 1000
rpm.

Increase the strobe
setting sLowLy while watching
the hub, until your reference
mark is stopped by the flash-
ing strobe.

31 EZ~Zore the beh~pi.or
of the reference spot when
you pass through the exact
strobe rate that stops the
motion. Which way does the
spot move when the rate is
slightly too high? .too low?

Vary the rate to
double, one half, etc. of
the true rate.

4) Adjust the strobe
rate until the reference
mark is exactly stopped.

The most direct way to
measure rotational speed is
to count the number of revolu-
tions in a given time period.
To count the number of revolu-
tions you can use the digital
counter attached to the tach
generator.

Keep strobe matched
CD to fan's rotational

speed.

The counter itself regis-
ters every tenth of a revolu-
tion. However, the ratio of
the gears was made ten to one
so that it now reads directly
the number, n, of revolutions
of the fan. Follow the proce-
dure in the illustration below.

Start stop watch
~ when counter

passes 000.
Stop watch at

~ end of 1000
rev. Record
time.

------
@)

Calculate
ilverage
angular
speed.

fP:\ aake several
'-V trials.

n turns
time interval in minutes



Earlier we discussed
briefly the vibrating reed
tachometer. In this experi-
ment you can see how the vi-
brating reed tach works.

Bolted to the side of
the frame is a thin strip
of spring steel. Being
springy it snaps back when
pushed aside. Anything
springy tends to vibrate at
a certain fixed rate or fre-
quency. This natural fre-
quency depends on the mass
and the stiffness of the
spring. The combination of
small mass and stiff spring
means a high frequency. A
large mass and weak spring
means a low frequency. For

the reed the natural frequ-
ency can be changed by simply
changing its length. The
longer the reed the lower the
natural frequency.

When the reed is attach-
ed to the fan, the small vi-
brations of the fan will make
it vibrate. If you watch
closely, you will see that
the reed vibrates a little at
any fan rpm. However, it will
vibrate most strongly when
the fan rpm is equal to its
own natural frequency. This
strong response is called re-
sonance. Follow the procedure
at the top of the opposite
page to see how the principle
is used to make a vibrating
reed tachometer.



PROCEDURE:
1) Adjust the length o~

the reed until it is about
six inches long. Clamp it
firmly at this length.

Record its length in
the table following page 16.

Snap the reed so that
it vibrates back and forth.

2) Measure the natural
frequency of the reed using
the stroboscope. The same
general rules for using the
strobe to measure the angular
speed of rotating systems ap-
ply to using it to measure
the vibration frequency of
vibrating systems.

Record the natural
frequency o~ the reed,

3) Turn on the fan and
adjust its speed until the
amplitude of the reed vibra~
tions is a maximum.

Record the tachometer
voltage at this resonant
speed.

4) Increase the length
of the reed by about an inch
and repeat your measurements.

Record your results,

5) Decrease the length
of the reed by two inches
and repeat.

AN EXPERIMENT...
• • •TO CALIBRATE A TACH GENERATOR

In this experiment you
will calibrate a dc motor as
a tach generator. The motor
is coupled to the rotating
fan so that it is being driv-
en as a dc generator. The
voltage output of the motor-
generator will be compared to
the reading of the calibrated
strobe which is set to just
stop the motion of the rotat-

1) Set the fan speed with
the variable voltage supply
until the output of the tach
generator is stable at the
nearest tenth of a volt below
the maximum output.

2) Change the strobe rate
until you exactly match the
rotational speed.

ing fan.
Several readings of tach

voltage vs rpm should be made
covering the full range of
fan speeds. From these data a
calibration graph can be made
for later reference. The de-
tailed steps of the experi-
ment and important notes are
given below.

3) Record your values
of tach voltage and strobe
rate in the table following
page 16.

4) Repeat the measure-
ment for every tenth volt
output of the tach generator.
Carry this down as low as
you can.



By this time you should
be familiar with the various
components of the apparatus
of this module. As a final
experiment you will examine
the manner in which a rotat-
ing object slows down. Since
the fan blade is light and
its blades interact strongly
with the air, it slows down
too quickly for study. Thus
you will replace it with a
heavier metal disk that takes
somewhat longer to slow down.

In this experiment you
will record the angular speed
of the disk at equally spaced
time intervals as it slows
down.

At the same time you will
count, with the counter, the
total number of revolutions
that the disk makes from the
time you shut off the power.
Later you will see that total
revolutions and angular speed
are closely related.

Since the data must be
taken quickly, it is best if
two persons work together.
One can call off the time in-
tervals while the other re-
cords the tach generator out-
put. Follow the procedure
in the diagram below, and re-
cord your data in the table
provided.

Turn on fan to
maximum speed.

When counter passes
000 sioultaneously
turn off fan and
start stopwatch.

Metal
Disc

Record tach gen-
erator output at
5 second inter-
vals, and record
total number of
revolutions.

Make three
trials.



Vibrating Reed
Frequency

Trial
Length

Natural frequency
(from strobe)

Tach Voltage at·
Resonance

Rotational Speed
at Resonance
(from calibration
graph)

Tach Generator
Calibration

Generator Strobe rate
Voltage (rpn)
(volts) .



Slow downBehavior

Time, Tach Rev. Rev. Tach Rev. Rev. Tach Rev. Rev.
See Volts Min. Sec. Volts Min. Sec. Volts Min. Sec.

0

5

10

15

20

25

30

35

40

45

50

Total number
of revolu-
tions from:



DRAWING THE CALIBRATION GRAPH

Writing your data in a
table is generally the fast-
est and most accurate way to
record them during the heat
of an experiment. However,
when you later want to get a
picture of what was happen-
ing, or estimate values be-
tween the points you took, a
graph of the data may be more
convenient.

This is particularly
true of the data you took of
tach generator output vs rpm.
Since you want to use the
tach generator as a tool to
measure rotational rates, you
want to convert the voltage
readings to rpm quickly.

tCependent
Variable

Independent
Variable

o 100 :ltJo 300 Ik>
o..YI31.41ltt- ~fepd (ypn,)

If the relation turns
out to be linear; that is, if
tach voltage is directly pro-
portional to rpm, then you
can convert any voltage read-
ing to rpm by multiplying by
a constant. Follow the pro-
cedure below to get a cali-
bration graph for your tach
generator. Use the graph
paper provided on the follow-
ing page.

1. CHOOSE AND LABEL AXES
Normally you put the

quantity that you can change
(the independent variable)
on the horizontal axis.
Therefore we choose the
horizontal for the rpm set~
tinge Tachometer voltage is
a reading that follows from
your setting (dependent
variable) so it is on the
vertical axis. Both axes
should be labeled with the
names of the variables and
their units.

2. CHOOSE AND LABEL SCALES
You should choose the

number of units per divi-
sion so the range of your
data nearly fills the paper.
Be sure to choose conven-
ient divisions that are
easy to plot. For example,
10 divisions to be 100 rpm
or .1 volt.

Indicate which divisions
you have chosen by putting a
light hatch mark next to the
line with the appropriate
number.



3. PLOT THE POINTS
Each point on the graph

represents a pair of values
from the table. For example,
suppose one pair is 0.17
volts and 250 rpm. The desir-
ed point on the graph is the
interse~tion of two imaginary,
perpend~cular lines from those
points. Put a small dot at the
intersection. Since dots are
hard to see, it helps to put
some geometrical shape around
or through it such as: 0, 8,
A, X. to make it more visible.
Be sure that the shape is cen-
tered on the dot.
4. DRAW A SMOOTH CURVE

The measured points will
probably not fall perfectly
on any straight line or curve.
If the points look close to
being on a straight line, draw
a line that follows their gen-
eral trend. There should be
the same number of points a-
bove and below the line. If
the points seem to lie along a
curve, try to judge its shape
by eye, and draw a smooth
c~rve. ~on't connect the points
w~th a Jagged line. The angu-
lar speed and voltage changed
smoothly, not erratically.

Be careful in drawing this
graph. It is a calibration
graph and all your data after
this will depend on your work
here. A straightedge or
draftsman's French curve will
help you draw your curve ac-
curately.

5. TITLE YOUR GRAPH
The graph should be titled

s~ that anyone, including you,
w~ll know what it represents.
You should include what the
two variables are, how they
were measured, what specific
apparatus it refers to, when
it was measured and by whom.

.tT-till
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6. CALCULATE THE SLOPE
Your curve should be a

straight line. This is con-
venient since a simple con-
stant can be used to deter-
mine the rpm from any
voltage reading. This con-
stant is the slope of your
line.

Since the line goes
through 0, the slope can
be calculated from any pair
of points that lie on the
line. For best accuracy
choose the largest values
that lie on your line. Sim-
ply divide the rpm reading
by the corresponding tach
voltage to give the number
of rpm per volt. This num-
ber multiplied by any vol-
tage reading will give the
corresponding rpm. Try it.

r;"" Vo/t4~C VI "PM
foe:- t~c." 9 ••• "ii 3
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THE DESCRIPTION OF ROTATION
CHOOSING A SCALE FOR ANGLES:

up to now we have been
using the number of revolu-
tions to describe the angle
through which a rotating body
has turned. Each revolution
means that the body has turn-
ed completely around once.

From geometry you will
recall that degrees are an-
other measure of angular ro-
tation; there are 3600 per
revolution, 900 in ~ revolu-
tion and so on. In rotational
kinematics there is a third
angular measure that is part-
icularly convenient, the rad-
ian.

The radian is useful when
you want to relate the linear
distance traveled by a point
to the angle turned. As seen
in the diagram, the distance
traveled along an arc depends
on the angle and the radius.
In fact it is directly propor-
tional to each of them; double
the radius and you double the
arc traveled or double the
angle and you double the arc.

If we define:

one revolution = 2n radians I
then we have the simple mathe-
matical relation:

Is = 0r I
if 8 is measured in radians.

This makes sense when we
note that the arc traveled in
one complete rotation of 8 =
2n is simply the circumfer-
ence C. Thus we get the famil-
iar expression:

C = 2n r.

The degree is the most corrononang-
ular unit. In one revolution, all
points turn through an angle of
360°. 5

2

The linear dis tance , s, trave led b if
a point along an arc is proportion-
al to the radius, r, and the angZe
A. If the angle is measured in rad-
ans then s = Gr.

SIZE OF TKE RADIAN
While this is convenient

mathematically, it doesn't
give a feel for how much of
an angle one radian is. Since
we are most familiar with
degrees, even though they
have no logical basis, let us
relate it to degrees.

We know that:
one revolution ;::: 3600

and
one revolution ;::: 2nrad

= 6.28rad
Dividing gives:

157.30 per radian .1/jjjj
57.3°



MOTION OF A POINT ON A ROTATING BODY:

LINEAR DISTANCE AND ANGULAR
DISTANCE:

Another way of looking at
the relation s = 8r is that it
relates the linear distance,
s, traveled by a point on a
rotating body to the angular
distance traveled, 8. All
points on a rigid body will
move through the same angle.
But the linear distance, or
arc, will be greater with
greater distance from the cen-
ter of the rotation.

Thus s = 8r expresses the
relation between linear dis-
tance and angular distance.
The next step is to relate
linear speed to angular speed.

LINEAR SPEED AND ANGULAR
SPEED:

First we must choose sym-
bols for the two quantities.
We will use the common con-
vention of:

v = linear speed
w = angular speed
The linear speed, as you

will recall, is the linear
distance traveled, s, per unit
time, t. That is:

sv = t .

Similarly the angular
speed, w, (omega) is the
angular distance traveled,
8, per unit time. Or:

8w = -t .

For the angular speed,
we have been using the number
of revolutions per minute (or
second). If we instead used
radian measure, that is w in
radians per minute, then again
we have a simple relation be-
tween linear speed and angular
speed:

For a given angular rotation the
linear distance traveled by a
point is proportional to its dis-
tance from the center of rotation.

v3

For a given angular speed~ the
linear speed of a point is also
proportional to its distance
from the center. Its direction
is tangent to the circumference.

v = wr where w is measured
in radians per minute
(or :;;econd).

A mathematical derivation
of this relation is given
on the opposite page.

Thus we see that al-
though all points on a
rigid rotator will be
moving at the same angular
speed w, their linear speed
is proportional to their
distance from the center of
rotation. The greater the
distance, the greater the
linear speed.



The relation v = wr can
be determined by a mathematical
route. First we agree that the
linear speed, v, is the change
in arc length, ~s, in a time,
~t;

v = ~s~t
and that the angular speed is
the change in angle, ~e, in
the same time, ~t:

~e
w = ~t

Then, starting with the
distance - angle relation
s = er, if the angle changes
by ~e in the time ~t then the
linear distance will change
by ~s in the same time. r of
course remains the same so
that,

~s = ~er
If we divide by the time

interval ~t, we have:

But these are the values
for v and w above. Substitu-
ting, we have:

DIRECTION OF THE LINEAR SPEED:
A final note about the

linear speed is that its
dipection is tangent to the
cipcum!epence or at right ang-
les to the radius. Thus if a
body should suddenly be re-
leased from a rotator, it will
go off at the linear speed in
a direction tangent to the

v=*f

circumference at the point of
release. As we will see, the
linear speeds can become
quite large for even moder-
ate angular speeds. If
things are not rigidly at-
tached, they can go off as
rather dangerous projec-
tiles.



As an example of how to
use these relations in cal-
culations, let us consider
the fan. Assume that its
maximum rotational speed is
measured to be lSOO rpm. Then
let us answer the following
questions:

We were given: w = lSOO~ml.n

Since there are 60~: w = lSO~~ X ii~ml.n ~ 6 see

= 2Srev
2 rad see

There are also 'IT--rev'
2S~X 2 radso that: w = 'IT--see ~

lS7rad
see

2. What is the Linear speed of a boLt attached to the
fan bLade a distance 6 inches from the axis?

We have the ralation:

S b·· . radu stl.tutl.ngw l.n see

and r in feet we get:

rad can be dropped since
it, like 'IT, is dimenionless:

v = lS7rad X .S ftsee

v = 78.Sftsee

Since 60mi is 88 ft the bolt is traveling nearly 60mph.Fir see'



In 60 seconds it trav-
els a linear distance:

or in another way:
Since the angular speed is:

In 60 seconds it trav-
els through an angle of:

78. S ftsec

s = vt

= 78. S ft X 6Q.see-
-eec"

s = 4710ft I nea::ly
a mlle

w = IS7rad
sec

0 = wt

= IS7rad X 60~..&eC"

= 9420rad

s = 0r
s = 9420rad x .Sft

= 4710ft as above.



TOTAL ANGLE WHEN ANGULAR SPEED CHANGES

In the preceding discus-
sion the angular speed was
assumed constant. In your last
experiment, however, the an-
gular speed changed as the fan
slowed down. In the sample
calculation we saw that for a
constant angular speed, w, the
total angle rotated in a time,
t, could be calculated from:

DRAWING THE GRAPH

1. CONVERT TACH VOLTAGE
READINGS TO RPS Using
your calibration graph,
or your conversion con-
stant, determine the
rpm values for each set
of slow-down data and
enter them in your table.
Then divide each value
by 60 sec/min to obtain
the angular speed in rps.

2. GRAPH YOUR DATA Use the
graph paper on the oppo-
site page to plot your

A graph like the one
you have just drawn gives
a useful picture of how
the fan's angular motion
changes with time. It tells
you, for example, that the
fan does not slow down at
a uniform rate. The change
in angular speed is large
in the first 10 seconds,
but less in the last 10 sec-
onds.

Any graph of angular
speed against time has an-
other useful feature - you

But if w is not con-
stant, this relation cannot
be used. In the following
analysis we will describe a
way of determining the
total angle turned (or num-
ber of revolutions) from
your slow-down data. Since
you also counted the number
you will be able to double
check the method.

data of angular speed in
rps against time in sec.
It is customary to re-
gard time as the indepen-
dent variable so that
angular speed should be
put on the vertical axis.

Follow the procedure
described earlier for the
calibration graph. Use
different symbols for the
three trials and indicate
which is which. Draw
smooth curves through the
data with a French curve.

can get from it the total
number of revolutions turn-
ed during any time interval.

Look at the illustra-
tion on the next page. Note
the small "almost rectangle"
shaded between tl and tZ. It
is "almost" a rectangle be-
cause the top is formed by
the sloping curve. However,
if you draw a short hori.zon-
tal line at the midpoint,
then you do have a rectangle
with about the same area as
before. The area of the rec-
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tangle is given by its base
times its height. What does
this area mean? The height
is an angular speed, the
average angular speed in the
interval between tl and t2.
The base is the time interval
t2-tl. Their product is:

Area = base x height
rev= sec x --sec

= revolutions.
Therefore the shaded area is:

A = 13rev x 2secsec
= 26 rev.

This says that in the
time interval,t2 - tl, the
fan made 26 revolutions.

There are two ways to do
this. The first is to break
the curve up into rectangles
as described above, and add
up the areas of all the rec-
tangles. A cruder, though
surprisingly accurate, method
is to approximate the curve
by a triangle of the same
area~ and calculate the area
of the triangle.

Draw a diagonal through
the graph such that the area
of the curve not included
equals the extra area that
was added. This is only done
by eye so your judgement is
important.

The area of the triangle

Area = ~(base) x (height)
= k time X speed

2 i~tercept inter-
cept

area = base x height
...••. = (t2-t1) x (w-O)
en
0.
H

'0
(l)
(l)

~13
H
1\1

r-l5,
s::
1\1

0 246 8 time (see)

If one can determine the
total area under the curve,
then one would have the total
number of revolutions turned
after the power was shut off.

1area = 2base x height

1=-=1:xw
2

CALCULATE THE NUMBER OF
REVOLUTIONS Use this
method to calculate the
total number of revolu-
tions from your three
graphs. A clear plastic
ruler will help you esti-
mate the proper diagonal.
Enter your values in the
space provided in the data
table. How well does this
value compare with the
number you counted?



SUMMARY:
In Part I of the module,

the quantities used to de-
scribe rotational motion were
introduced, angle turned and
angular speed. Angular speed,
the rate at which a body is
rotating, is commonly express-
ed in either rpm or rad/sec.

There are several kinds
of tachometers for measuring
angular speed, electronic
tachometers, vibrating reed
tachometers, tach generators
and stroboscopes. Stroboscopes
can also stop a repetitive
motion.

Angular speed can also
be obtained using a revolu-
tion counter and a watch. The
total number of revolutions
divided by the time interval
gives the average angular
speed.

The vibrating reed tacho-
meter utilizes resonant be-
havior. A reed, or any body

with mass and springiness, has
a certain natural frequency at
which it vibrates. When the
reed is attached to a vibrat-
ing piece of machinery, it
vibrates most strongly when
driven at its natural rate.

The following relations
can be used to calculate the
various rotational parameters.

Linear distance (arc),
s = 8r

Linear speed,

On a graph of angular speed
against time the area under
the curve gives the total num-
ber of revolutions in a given
time interval. The area can be
estimated by calculating the
area of a triangle of equiva-
lent size.

To go from revolutions to radians multiply by 6.28
ra.dians revolutions .159

ANGLES revolutions degrees 360.
degrees revolutions .00278
radians degrees 57.3
degrees radians .0174

To go from rev rev multiply by 60.tosee min
rev rev .0167
min see
rev rad .014
min see

ANGULAR rad rev 9.55
SPEED see min

rev rad 6.28
see see
rad rev .159
see see



1. Suppose you have used
a stroboscope to stop
the motion of a rotat-
ing wheel that has one
bright mark on it.
Only one image is vis-
ible. How can you be
sure that the strobe
rate equals the angu-
lar speed?

2. Explain briefly the
operation of a tacho-
meter generator.

1. You have stopped a
rotating motion with
a strobe rate of
1000 flashes/min. A
single image of the
mark is visible.
List several possible
angular speeds.

You are going to draw
a graph of voltage
against rpm over the
range of 0-1500 rpm.
You can use 8 inches
for the horizontal
axis. What should
the horizontal scale
be? That is, how many
rpm should be repre-
sented by one inch?

Refer to the graph.
What is the average
angular speed in the
time interval 0 to 5
sec? What is the
total number of revs
turned?

4. Calculate the linear
distance moved by a
point on a wheel 2
feet in diameter when
it turns through 3~
revolutions.

3. What is the angle
turned in radians
when a point on a
wheel of radius 1.7
feet moves a linear
distance of 3~ ft?

4. A technician turns
a control knob
through an angle of
1°. How far does a
pointer on the rim
(radius 3/4 inch)

move?

1ii'

~ 20
:3

10 20
t (see)



5. An engine flywheel
is turning at 4000
rpm. The radius of
the wheel is 9 in-
ches. What is the
linear speed of a
point on the rim in
ft/sec? ft/min?
mi/hr?

6. The period of revolu-
tion of a light air-
plane propeller is
0.03 sec. The radius
of the blade is 3 ft.
Find the angular
speed and the linear
speed of a point on
the tip of the blade.

7. A point on the treac
of an automobile tire
has to move at the

same linear speed as
the car. What is the
angular speed
(rad/sec) of a tire
of 18 in, radius when
the car is moving
150 mi/hr? Use the
relation 88 ft/sec
= 60 mi/hr.

8. The manufacturer
states the maximum
safe linear speed of
a point on the outer
surface of a grind-
ing wheel is 4000
ft/min. What is the
maximum safe angular
speed if the wheel
is of 6-in diameter?
Calculate first in
rad/sec, then rpm.
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PART ]I

ROTATIONAL DYNAMICS

In Part I you saw how
angular motion was describ-
ed using such ideas as re-
volutions, angles turned,
and angular speed.

Now in Part II you will-
investigate changes in angu-
lar motion, and the causes

ANGULAR ACCELERATION:
One simple way to de-

scribe a change of motion is
by change of angular speed,
w. We will represent a change
in angular speed by ~w, where
~ (delta) means "change in"
or, "small interval of:.

The rate at which the
angular speed changes with
time is called the angular
acceleration. Its symbol is
a (alpha).

Mathematically, the de-
finition is:

where, ~t means a small time
interval.

Rotational dynamics is
the study of the causes and
effects of angular accelera-
tions.

RIGID BODIES ON FIXED ROTATION
Our attention will be

directed only to rigid bodies,
solid pieces of matter that
keep a fixed shape as they
turn.

And further, we shall
only consider rigid bodies
that rotate about a fixed
axis. Such things as auto-
mobile wheels, crankshafts,
propellor blades, motor arma-
tures are all rigid bodies

of these changes. Motors
speed up and slow down. Air-
plane propellors corne to
rest when the engine is turn-
ed off. What brings about
these different changes? The
answer lies in the study of
rotational dynamics.

Rotational dynamics is
the description of angu-
lar acceleration. We will
consider only the rota~
tional dynamics of rigid
bodies on a fixed axis~
such as the fan blade.

AXES:
that rotate about a fixed
axis.

The behavior of rigid
bodies whose rotation axis
can change, for example,
baseballs, bicycle wheels
and gyroscopes, is somewhat
more complicated. And the
behavior of non-rigid, rotat-
ing bodies, such as a can of
water, can be extremely com-
plicated.



WHAT DETERMINES SPEED CHANGES?

FORCE AND MASS IN LINEAR
MOTIONS:

You know from previous
study and experience that
forces cause changes in
linear motion. That is, a
force F produces a change
in linear speed ~v. The a-
mount of this change depends
on the force, the length of
time it acts, and the mass
of the object. In symbols:

~vF = m~t
h ~v· f thwere ~t ~s, 0 course, e

linear acceleration, a.

This expression is call-
ed the lineap dynamic equa-
tion since it expresses the
relation between forces and
changes in linear speed.

If we write it as:

~v = ~~t,m
this says that the change in
linear speed,~v, of a body of
mass m is greater, the great-
er the force and the longer
it acts; but is less if its
mass is bigger.

TORQUE AND MOMENT OF INERTIA
IN ANGULAR MOTIONS:

A change in angular
speed,~w, does not depend on
force or mass alone. It
also depends on how the
force is applied and where
the mass is located.

A change ~w depends on
three features of a force:
its magnitude or strength,
the dipection in which it
acts and the position where
the force acts with respect
to the axis. In linear speed
changes only magnitude and
direction are important, but
in rotational motion, posi-
tion is another essential
factor.

The term that expresses
this information is the top-
que. We will use the Greek
letter T (tau) to indicate
torque. When forces are ap-
plied to rigid bodies on a
fixed axis, it is the result-
ing torque that will deter-
mine how much angular accel-
eration will occur.

Fopces on a dragstep cause im-
P9vtant changes of lineap speed.
It may also cause topques that
ppoduce unwanted changes in
angulap speed.

A change ~w also does
not depend only on the mag-
nitude of the mass. The
position of the mass, or
its distribution, with re-
spect to the axis is also
important. That is express-
ed by the term moment of
ineptia, I.



The expression which re-
lates torque and moment of
inertia to changes in angu-
lar speed is called the pota-
tionaZ dynamia equation. It
is:

!J.wwhere !J.tis the angular
celeration a.

This is the rotational
equivalent to the Zineap dy-
namia equation:

!J.v
F=mn

on the opposite page. Torque
and mement of inertia re-
place force and mass in ro-
tational motion, and angular
speed and angular accelera-
tion replace their linear
counterparts.

Thus the behavior and
characteristics of rotating
bodies are properly express-
ed by torque and moment of
inertia. (See for example
the description of the tach
generator on page 9.)

eMEASURE STALLING TORQUE
The purpose of the first

experiment is to measure the
stalling torque of the fan
motor and therby become fami-
liar with the idea of torque.
Stalling torque is the tor-
que required to just prevent
a motor from turning, that is
to stall it.

eMEASURE DYNAMIC TORQUE

In the second experi-
ment you will determine the
torque when the motor is
rotating. Will the torque be
the same? That you will
determine.

Your experiments in
this part of the module will
be to explore these para-
meters and see how they de-
scribe the changes in angular
speed of the fan. The experi-
ments will be to:

e DETERMINE MOMENT OF INERTIA
Finally you will change

the size of what the motor
has to rotate. Here you will
see that it is not only how
muah mass you add but whepe
you put it as well. This
involves the notion of mo-
ment of ineptia.



A SIMPLE EXPERIMENT ...
.•. TO MEASURE STALLING TORQUE

The purpose of this ex-
periment is to measure the
stalling torque of the motor.
This is a common specification
for motors. Here you will use
heavy washers and the force

NOTE: The slots in
the disk must
be horizontal
for the mea-
surement.

of gravity to produce the
necessary torque. You will al-
so see how important the
mounting radius is in deter-
mining the number of washers
required to stall the motor.

CAUTION: Do Not Let The Motor Stall For More Than A Few
Seconds Since It Will Overheat!

1) Set up the fan as shown
in the diagram.

Romove the protective
grill and make sure that the
set screw of the disk is tight.

Turn the variable vol-
tage supply to 90 volts but be
sure it is OFF.

2) Hang a number of wash-
ers at rl on the disk but hold
the disk lightly as shown, so
that the slot is horizontal.

3) Turn on the voltage
while holding the fan.

Remove the washers one
at a time until there are just

enough left to stall the
motor. This may require some
judgement. Be sure that the
measurement is made with the
slot horizontal.

Turn off the voltage.
Record the number of

washers that just stalls the
motor and the radius rl in
the table after page 34.

4) Repeat the measure-
ment for the radius r2
where r2 is equal to ~rl.

5) Weigh a number of
washers and record the mass
per washer in the table.



AN EXPERIMENT...
. .. TO MEASURE DYNAMIC TORQUE

You have seen that the
motor exerts a definite tor-
que and that it can quite
easily be stalled.

You will now investigate
the effect of that torque when
the rotor is allowed to turn.
It is reasonable to assume
that the motor torque is con-
stant for a given voltage,
though perhaps not the same

as the stalling value.
You will measure the ang-

ular speed with the tach gen-
erator at equal time intervals
after turning on the motor.
From a graph of this data you
will see that the motor torque
is constant at low rpm, but·
falls off at higher angular
speeds as the fan reaches its
steady-state operating speed.

6 indentical
washers on
each bolt

PROCEDURE:
1) Keep the variabLe voL-

tage suppLy at 90 V, the same
as in the last experiment.

SecureLy mount 6
identicaL washers to each of
the 4 bolts at maximum radius.
The washers will increase the
time to reach top speed for
easier measurement.

RepLace the protective
griLL and be sure that the
tach generator is operating
properly.

2) Make a tabLe in the
space provided on the data
page to record your data. The
table should look similar to
the one used when taking the

slow-down data of Part I.
Have enough columns for 3
trials. Be sure you have
the calibration graph for
the tach generator.

3) Turn on the fan and
record tach generator vol-
tage readings at 5 second
intervals until the speed
stops changing. At least
two persons should work
together and you might
make a couple of practice
runs.

4) Repeat the measure-
ment at least three times.



AN EXPERIMENT...
.. .TO DETERMINE MOMENT OF INERTIA

The moment of inertia, I,
of a body is related to both
the mass of the body and to
how that mass is distributed.
It is analogous to mass in
linear motion.

The quantity I determines
how a body will respond to an
applied torque. Since I de-
pends on mass distribution, it
depends upon the location of
the axis of rotation, and
therefore you must speak of I
about a certain axis. Here you
will investigate rotation
about the geometrical center
of a disc.

How do you find I for an
object? You cannot just use a
scale, as you do to measure
mass. You can calculate I for

G) Turn on fan and
start watch.

some simple shapes, but your
disk and rotor is not simple.
You could find I by applying
a known torque and observing
the change of angular speed.
However, you do not yet know
the torque of the motor.

Here you will use a meth-
od that works in a wide range
of cases. It is not necessary
to know the torque, only to
know that it is constant. By
adding additional mass at
known positions, you can in-
crease the moment of inertia
in a known way. By then tim-
ing how long it takes for the
torque to bring the object up
to the same angular speed you
can determine the original mo-
ment of inertia as well as the
applied torque.

Stop watch when tach
indicates some voltage
within constant torque
range, about 1300rpm.
Record time and number
of washers.

~ Remove I washer from
each bolt. Repeat
time measurement to
reach identical tach
reading.

Repeat measurement
removing four wash-
ers each time until
no washers remain.

~ Count number of re-
volutions to reach
w with no washers.



No. washers at rl at r2 _

DYNAMIC TORQUE
(make table here)

Fan Voltage V = V
Washer Radius r = cm
Mass per washer m = g

Tach reading when
watch stopped = volts

Number of revs to
reach w with

no washers: = revs



CALCULAT IONS

STALLING TORQUE

No. Mass Acceleration
Force = X Per X OfWashers Washer Gravity

Fl = X 9 X 980~ = dynessec2

F2 = X 9 X 980 em = dynessec2

Stall Forque = Force X Lever Arm

'1 = Fl X rl = dyne em I Are these
the same?

'2 = F2 X r2 = dyne em



The rate at which the
angular speed is changing is
called the angular accelera-
tion ex. (alpha}. In symbols:

The angular acceleration
ex. can be found from graphs of
w against t. For any two
points on the curve, measure
the ~w and the At. The ratio
!J.wj!J.tis the avepage. angutap
accelepation during that time
interval.

If the two points are
very close together, so they
are at essentially the same
time, then !J.wj!J.tis the slope

of the curve at that point.
This slope of the curve at any
time gives the instantaneous
angulap accelepation at that
time.

If the slope of the curve
is the same over the time in-
terval, then the angular ac-
celeration is constant and the
angular speed changes linearly
with time. If the slope is
changing, then the angular ac-
celeration is changing as well
as the angular speed.

An upward slope means a
positive acceleration and an
increasing angular speed. A
downward slope means a nega-
tive acceleration (or deceler-
ation) and a decreasing angu-
lar speed.



ANGULAR ACCELERATION FROM YOUR DATA
THE FIRST STEP ...

• in determining the dyna-
mic torque of the fan motor
will be to determine the angu-
lar acceleration from the w-t
graph of start up behavior.

1. DRAW THE w-t GRAPH using
your data and the piece
of graph paper on the op-
posite page. Follow the
proper labeling and
graphing procedure de-
scribed in the previous
section.

Your graph should
be quite linear over most
of its range. A typical
behavior is shown below.
Only when the disk is
almost up to its final
operating speed does it
depart from linearity.
This says that the angu-
lar acceleration is con-
stant up to some rpm.

.9
•.....

Ul .8+l
r-i
g -...•• •7
+l5. .6+l::s
0
~ .5
0+l
lIS
~ .4~
Q)
C\
.t:: .3
u
lIS
+l

.2

.1

acceleration constant
to here

\

/ moment of inertia
experiment stopped

here

2. CALCULATE THE ANGULAR
ACCELERATION over the
constant range and re-
cord it on your graph.

The fact that the
angular acceleration is
constant indicates that
the motor torque is con-
stant. This is an impor-
tant conclusion for.
your other experiment,
the determination of
moment of inertia. As
you may recall, one of
the criteria for that
experiment was that the
torque be constant, at
least up to the rpm val-
ue you chose for your
time measurement. Was it?
If not, your later analy-
sis may be in error •

THE NEXT STEP...
• is to relate the

angular acceleration to
the torque. In order to
do that we must gain a
better, and more mathe-
matical, understanding
of what is meant by tor-
que.

----TypicaZ start up behavior
of a fan. Continuous curve
was made by connecting the
tach generator output to a
servo-recorder.
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TORQUE
FORCE TIMES LEVER ARM:

A definition of torque,
1", is:

1" = force x lever arm
= Fr~ ~

It is the force times the per- T
pendicular distance from the
axis. The perpendicular dis-
tance, or lever arm, is the
distance measured from the
axis of rotation along a line
at right angles to the direc-
tion of the force. (See the
illustration. )

If the force is applied
at right angles to the radius
r, then 1" = Fr. If it is at
some other angle then r must
be calculated from the geome-
try.

Torque, then, is a mea-
sure of the extent to which
an applied force will pro-
duce an angular acceleration.
As can be seen from the dia-

What is r!?
What is 1" ?

gram it depends on the magni-
tude of the force, the dis-
tance from the axis of rota-
tion and the direction rela-
tive to the radius.

STALLING TORQUE FROM YOUR DATA:
In your measurement of

stall torque, the motor pro-
duced an internal electro-
magnetic torque to the rotor
of the motor. You, in turn,
produced an external counter
torque by hanging washers on
the disk. The importance of
having the slot horizontal was
so that r = rJ. and the torque
was simply 1" = Fr.
3. CALCULATE THE STALL TOR-

QUE of your fan motor. Use
the space provided on the
back of the data table.
Recall from the linear dy-
namic equation that F =
ma. Thus the force is
the mass of the washer
times the acceleration
due to gravity, g. The

force will be in dynes
if m is in grams and g
is 980 cm/sec2. If the
radius is expressed in
centimeters then the
units of torque will be
dyne cm.



MOMENT OF INERTIA
WHAT MAKES A BODY HARD TO TURN?

A change in the angular
speed of a rotating body does
not depend only on the torque.
Common sense tells us that the
rotator itself must have an
effect on the motion. Some
bodies are harder to turn than
others. We will now investi-
gate what features of a rigid
body affect its rotation.

In the illustration above
the larger propellor is clear-
ly much harder tp turn since
its mass is bigger. But in the
illustration below, the masses
are identical. Is one harder
to turn (accelerate) than the
other?

Mass certainly has an
effect, but it is not the
whole story. The two bodies
at the bottom left have the
same mass, but it is located
very differently with respect
to the axes. One is harder to
turn than the other.

Just as the lever arm
of a force affects its tor-
que, so the distribution of
mass in a body affects its
rotational properties. The
quantity that expresses both
the mass of a body and how
it is distributed is called
the moment of inertia, I.

In the following pages
we will derive an expres-
sion for the moment of in-
ertia for the simplest pos-
sible case, a rotating point
mass. While a point mass
rarely occurs in practice,
it will serve two purposes.

First, any rotating
body can be made up of a
collection of point masses,
so it will suggest the gen-
eral relation between mass
and its distribution.

And second, when you
added washers to the disk,
this was essentially the
same as putting a point mass
at a fixed rotational rad-
ius. Thus we will be able to
calculate the increase in
moment of inertia from our
expression.



To begin, let us review the
case under consideration. and
the procedure we will follow.
We are calculating the moment
of inertia of a point mass m,
rotating at constant angular
speed w at a fixed radius r.
In order to reach the speed w,
a torque T must have acted on
the mass for some time nt.
This torque is the equivalent
of a perpendicular force F
acting on the mass at r.

The derivation strategy
will be to equate the work
done by the force to the gain
in kinetic energy. Comparing
this to the dynamic equation:

T = 10.

will give us the expression
for the moment of inertia of
a point mass.

For any mass point moving
with Linear speed V, the kine-
tic energy is given by:

The linear speed of the
rotating mass point is given
by v = rw, so that its rota-
tionaL kinetic energy is:

The work done when a force
F pushes a mass for a distance
S is:
For the rotating mass point
the distance S is an arc of
S = r0 so that the work done
by a force perpendicular to
r on m through an angle 0 is:
Since Fr is simply the torque
T, we have:

k Fmf'4 ...

\
: "",
I \

\

~~6 /S
F , ", /.•. .-•.. ,-.••._---",

·KE = ~r2w21

-t ....



By conservation of energy
we know that:

For the mass point, assum-
ing no other interactions,
this is:

From Part I we remember
that 8, the angular rotation,
can be simply calculated as
the area under the w-t curve.
For the example at the left
this is a triangle of height
w, and base t. Thus 8= ~wt.
Substituting this into the
conservation of energy
equation gives:
Dividing by ~w gives:

or:

(wit) is the slope of the w - t
curve or the constant angular
acceleration, a. Thus:

Earlier we stated that the
rotational dynamic equation
was:
where I is the moment of in-
ertia of the rotating object.
Thus for a mass point the mo-
ment of inertia must be:

UNITS OF MOMENT OF INERTIA
h . 2T e quant~ty mr express-

es both the mass and its loca-
tion. Since it depends on the
square of the radius, we see
that the location of mass in
rotational motion is even more
important than its size.

Further, moment of iner-
tia has units of mass times
distance2. Thus the typical

Work = Energy
done Gained

~Twt = ~ 2 2r w
Tt = mr2w

T = mr2 (~)

T = mr2a

Moment of
inertia of
a mass point

moment of inertia units are:
gm cm2, kg m2 and slug in2.
For more on units and con-
version factors see the
Review.

Refer back to the illus-
tration of the tach generator
on page 9 and note the list-
ing of the moment of inertia
of its rotor.



I FOR RIGID BODIES
POINT MASSES AND RINGS

The expression I = mr2
does not hold for all rigid
bodies. For a body other
than a point mass, one can
consider it to be made up
of large numbers of point
masses. Then one adds up all
the mr2 for the point masses
at different positions.

This adding up process
can get quite complicated
for odd shapes, but is easy
for some simple ones. For a
dumbbell, a double dumbbell,
or a thin ring, all the mass
points are at the same radius.
Let us call each point mass
m, and the total mass M. Then
the sum of all the mr2 is
just Mr2.

This is the case when
you added the washers. The
increase in moment of iner-
tia was:

I = No. washers x ma~s x r2•was er

When you add up the mr2
for all the points in a disk
of uniform thickness, you get:

I = !jMr2

regardless of how thick it is.

hollow
cylinder

1 2I = ~(rl

sphere
1= k2

5

. of.
l(,"v

Ar -/rJ's
7" dwribbell

/ I = 2mr2
// m = Mr2

daub le dwnbbe U
I 4mr2

= Mr2

thin ring
I = Hr2

disk
(any thickness)

I = -kr2
2

vY
\

slender rod
(axis through
center)

Rectangular Plate
(axis through
center)

1 2
I = J:2ML



I FROM YOUR DATA
THE AIM OF THE ANALYSIS ••

is to determine the moment
of inertia, Io' of the rotat-
ing disk without the washers.
Actually Io includes more than
the disk because the hUb, some
bolts, and the rotor of the
motor were all rotating. While
one can calculate the moment
of inertia of the disk alone,
it is not possible to calculate,
for example, that of the rotor.

The washers were added as
essentially point masses at a
fixed radius. Thus the increase
in moment of inertia can be
calculated as:

AI = N h mass r2
Ll o. was ers x washer x
I::.I= nmr2•

According to your last
graph, the motor torque Twas
constant for the time, to,
during which it accelerated
the disk from 0 to your final
rpm, which we will call w. 'If
it was constant for a load of
24 washers it was almost cer-
tainly constant for a lesser
number.
From the dynamic equation,
we know that with no washers:

When the washers were added,
the moment of inertia in-
creased by I::.Iand the time
it took to reach w increased
by I::.t.Thus the dynamic
equation becomes:
Dividing the second equation
by the first gives:

®®®®
Io = ?

but I::. I = nmr2
where n = no. washers

m = mass/washer
r = radius to

washers

T(tO+l::.t)= (Io+I::.I)w
t +I::.t I +I::.I
0 0=to Io

I + I::.t= I + I::. I
to Io
I::. I I::.t, Io

= to

I I::. I= tOl::.t0
----------_._~_._--- ---



2= nmr we have: Everything in the ex-
pression is known but Ioso that:

Io = mr2to X slope

Once Io is known, it
can be used to calculate
the constant dynamic tor-
que T from the dynamic
equation:

The dynamic torque
can then be compared to
the static or stall tor-
que calculated earlier.

Another way of writing
this is:

I
n = ( 20 ) t.t

mr to

This says that if you make a
graph of the number of wash-
ers n, against the increase
in time, t.t, that it took to
reach Wi the curve would be
a straight line and the slope
of that line would be equal
to:

GRAPH n AGAINST t.t using
the graph paper on the
opposite page. Follow
the proper graphing pro-
cedure described in Part
I. Draw the best straight 4.
line you can through the
points.

DETERMINE THE SLOPE of
the straight line and
record it in the space
provided.

CALCULATE 10 from the
expression above. You
know the slope, and you 5.
have measured the val-
ues of m (mass per wash-
er), r (radius to the
washers) and to (the
time it took for the

fan to reach W with no
washers). Record Io on
your graph.

CONVERT YOUR VALUE
into lb in2. You may
find it convenient
to use the conversion
table at the end of
this section. Compare
your value with that
of the tach generator
illustration on page
9.

CALCULATE THE DYNAMIC
TORQUE from your val-
ue of Io• How does it
compare to the stall-
ing torque at the same
supply voltage? Be sure
to use w in rad/sec.
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ROTATIONAL KINETIC ENERGY
INTRODUCTION:

Kinetic energy is an im-
portant feature of a body's
motion for several reasons.

First, it gives more in-
formation than speed alone,
since it includes the body's
moment of inertia.

Second kinetic energy is
related to work. It tells you
directly how much work is re-
quired to bring a body up to

On page 40 we derived
the kinetic energy of a point
mass on a rotating body to be:

KE = !2mr2w2

Later we found the moment of
inertia of the mass point to
be:

I = mr2

Thus the rotationaL kinetia
energy can be written:

KE = !:iIw2

In the same way that the
moment of inertia of a rigid
body can be considered as the
sum of the moments of a col-
lection of mass points; so
too is the kinetic energy of
a rigid body the sum of the
kinetic energies of all the
mass points.

Thus we may write the
general kinetic energy ex--
pression as:

KE = !:iIow2

RotationaL Kinetia
Energy of a Rigid
Body.

a certain speed.
And finally, energy is a

conserved quantity. It never
disappears, but simply goes
into other forms and the
total amount can always be
accounted for. For example,
when a rotating wheel slows
down, its KE decreases. In
this case it converts into
heat to the bearing and to
the .air in which it rotates.

where 10 is the moment of
inertia of the body.

We also derived the
work done in getting a
mass point up to speed
as:

where 0 is the total
angle turned to get the
disk up to the angular
speed w. This expres-
sion, too, can be shown
to apply to any rigid
body.

Further we argued
that, by conservation of
energy, we must have:

if there are no other in-
teractions such as fric-
tional forces.

You are now in a
position to test our
assertion.



PROCEDURE:

1. CALCULATE THE ROTATIONAL
KINETIC ENERGY of the
rotating disk with no
washers on it from your
value of 10 and w. Re-
cord it in the space
provided on the calcula-
tions page.

USING ROTATIONAL KINETIC ENERGY
FLYWHEEL. ..
. . .operation depends on the
fact that, when turning with
angular speed w, it has

KE = ~Iw2.

A flywheel keeps this KE (and,
therefore, its angular speed)
unless the energy is trans-
ferred to some other form, for
example heat due to bearing
friction.

In a gasoline engine work
is done on the flywheel, stor-
ing KE. In a one-cylinder '
engine, there is only one
power impulse in every two
revolutions and the KE of the
flywheel is necessary to keep
all the parts in motion until
the next power stroke. Without
a flywheel, the engine might
stop completely, or move in a
rough and jerky manner.

GOOD FLYWHEEL DESIGN ..
. . .means getting the maxi-
mum energy storage in the re-
quired space with the least
possible weight. Energy stor-
age is proportional to Iw2•
Thus there is an advantage in
running a flywheel as fast as
possible, since energy stor-

2. CALCULATE THE WORK done
in getting the disk up
to the angular speed w.
Use the value of torque
that you calculated and
the angle e that you
counted with the counter.

3. COMPARE YOUR VALUES. How
well do your values agree?

age increases with the square
of w. But speeding up the fly-
wheel requires expensive gear-
ing, and excessive speed can
cause a flywheel to fly apart.

Thus the designer's job
is to get the largest possible
I without making the wheel too
heavy or too big. Look at the
expressions for I for various
rigid body shapes on page 42.
Note that all have the expres-
sion mr2 but many are preceded
by some reducing fraction. The
ring shape, however, has no
such fraction. Thus flywheels
are frequently shaped like a
ring with a very light support
structure.

I = Mr2

KE = ~Iw2
= ~Mr2w2



Rigid body dynamics is
concerned with the factors
causing changes in rotation-
al motions. These include
their causes, and the nature
of the bodies that rotate.

Angular acceleration is
the rate of change of angular
speed:

Angular acceleration
results from the application
of a torque. Torque, T, is
defined as force times lever
arm.

Stalling torque is the tor-
que that just prevents a
motor from rotating. Dynamic
torque is the torque exerted
by the motor when it is rota-
ting. The two motor torques
are not necessarily the same.

The relation describing
changes in angular speed is
the rotational dynamic equa-
tion.

Moment of inertia is the
basic dynamical property of a
rotating body. It describes
the body's mass and how the
mass is distributed. Moment
of inertia of a single point
mass m at distance r from
axis is:

For dumbbell shapes
and rings, where all the
mass is at the same radius,
the moment of inertia is
also:

I = Mr2•

For other simple
shapes there are other
formulas.

For more complicated
rigid bodies, I can be
measured. This is done
by observing quantitatively
the effect of a constant
torque as the moment of
inertia is changed by a
known ~I. The formula us-
ed is:

The rotational kine-
tic energy of a mass
point on a rotator is
given by:

2 2KE = ~mr w .

The kinetic energy
of any rotating rigid
body (of moment of iner-
tia I) is:

2KE = ~I,w •



CONVERSION TABLES
A NOTE ABOUT UNITS:

On the next page are
given various units and con-
version factors for torque
and moment of inertia. These
require some explanation,
since the units commonly us-
ed in the technical litera-
ture (which we call engineer-
ing units) are not always the
proper absolute units. Abso-
lute units must be used in
calculations using the rota-
tional dynamic equation.

The confusion results
from the difference between
force and mass. The table be-
low gives the proper force
and mass units for the var-
ious unit systems.

Torque has units of
force times length. Thus the
proper absolute units are
dyne cm, newton meter and

pound feet (or inch ounce) .
However, commonly used engin-
eering units are gm cm and
kg m since gm and kg are often
used as units of weight.

Moment of inertia has
units of ~ times length
squared. Thus the proper ab-
solute units are: gm cm2, kg
m2 and slug ft2. However,
commonly used engineering
units are Ib ft2 (or ounce in2)
since we rarely use the English
unit for mass, the slug.

The conversion tables list
both engineering and absolute
units. Any engineering unit
must be converted to the absolute
unit before making calculations
using the rotational dynamic
equation.

Force = Mass x Acceleration . Unit
Weight = Mass x Gravitational Acceleration System

dyne 980 erngram
sec2 cgs

(g)

newton kilo- 9.8 m MKS--2
(nt) gram sec

(kg)

pound slug 32.2 ft Eng---2
(lb) sec lish

If you have a unit in column A and you want a unit in row B
multiply by the factor shown.

FOR EXAMPLE: If you have 2 and you want Ib in 2 multiplygm cm
by:

in2
3.42 x 10-4 Ib

gm cm2

cm2) 10-4 Ib in2
B (lb in2)A(gm x 3.42 x =

gm cm2
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TORQUE

ABSOLUTE UNITS

*dyne em nt m Ib in Ib ft oz in

dyne 1 10-7 -7 -8 -5em 8.85xl0 7.38xl0 1. 42xl0

nt m * 107 1 8.85 .738 142

1b in 1.13xlCP .113 1 .0833 16

Ib ft 7 1. 361.36x10 12 1 192

in 4oz 7.06x10

MOMENT OF INERTIA

ABSOLUTE UNITS
2 kg m 2* 1 . 2 sluggm em s ug l.n

2 1 10-7 -5gm em 1.06x10

kg m 2* 107 1 106 .738

slug . 2 4 -3 -3l.n 9.43xl0 9.43xl0 1 6.94xl0

ft2 71.36xl0 144



1. Name three torque
units.

2. In "Soap Box Derby"
races unpowered cars
roll down an incline.
In coming down the
hill, gravity does
work on the cars and
they receive a defi-
nite amount of KE
depending on the
change of height.
This KE is shared be-
tween the car's lin-
ear motion and the
wheel's rotation.
What kind of wheels
would give the high-
est possible final
speed?

1. The stalling torque
of a small motor
(Hurst model CA) is
given by the manu-
facturer as 100 inch-
ounces.
a) Calculate the tor-

que in Ib ft.
b) The motor is con-

nected to a pulley
of one inch radius,
and a string is
wrapped tightly
around this pulley.
How much weight
could be lifted or
supported by this
string?

2. The Sigma model 9AK4J2
stepping motor is ad-
vertized as having a
hold torque of 950g cm.
This is not a proper

3. In terms of work and
energy, what must be
done to stop a mov-
ing car?

4. Explain briefly the
meaning of each of
the four quantities
in the basic dyna-
mic equation.

= I !J.w
!J.t

5. Why are record play-
er turntables made
of heavy metal rather
than, say, light,
plastic?

unit of torque, since
grams are units of
mass, not force, What
is meant is the weight
of one gram. Convert
this spec to dyne cm.

3. An engine flywheel
has almost all of its
mass concentrated in
a ring at an average
distance of 15cm from
the axis of rotation.
Its mass is 9000g.
Calculate I.

4. A child's playground
toy consists of a
thin, narrow plank,
12 feet long pivoted
at its center. The
mass of the plank is
18,000g. A child sits
at each end of the
plank. Assume each



child h~s a mass of
45,000g.

a) Calculate I for
the plank about
the axis at the
center.

b) Calculate I for
each child about
this axis.

c) Calculate the to-
tal I for the
same system by
adding the three
values obtained
above.

d) State briefly how
the children
could reduce I.

5. A steady torque of 10
Ib ft acts on a wheel
(free to turn) for 40
sec. The wheel starts
at rest, and is turn-
ing at 1800rpm after
40sec. Calculate the
KE of the wheel after
40sec.

6. A certain "stepping-
motor" is advertised
as being able to pro-
duce a "step" of pre-
cisely 18° rotation
in 2.0 millisec. It
is further stated that
the maximum torque
produced by the motor

is 3.5 x 105 dyne cm.
Calculate the maximum
I that the motor can
"step" at this rate:

Try the problem in
small steps:
a) Calculate the rota-

tion in rad.

b) Calculate the aver-
age w during a step.

c) Calculate ~w, as-
suming that torque
is constant.

d) Calculate I.

7. A grinding wheel con-
sists of a flat disc
15 cm in diameter,
with a mass of 500
gram. It is driven by
a motor that exerts a
constant torque of
1.3 x 106 dyne cm. How
much time is required
to bring the wheel up
to 1725 rpm?

8. A certain flywheel
has KE = lS,OOOft Ib
at full speed. The
torque resulting
from friction is 75
Ib ft. How many rev-
olutions will the
wheel turn before
coming to a stop?





PART m
DYNAMIC BALANCESTATIC AND

Unbalance not only is extrem-
ely annoying but can cause
serious destructive effects.
The motion of an unbalanced
rotor sets up forces that
make the rotor and its sup-
ports vibrate, sometimes vio-
lently.

BEARING WEAR:
Rotating shafts are supported
in structures called bearings.
These are designed to have
low friction, to keep the
shaft properly aligned, and
to carry the weight of the
rotating parts. If bearings
are well lubricated and not
overloaded with excess weight,
they last a long time, that
is, the metal wears away slow-
ly. However, unbalance forces
cause rapid wearing away of
metal and destroy bearings
quickly.

Noise is an obvious result of
vibration; this is because the
effect we call sound is di~
rectly produced by vibration.
We now know that excessive
noise can be harmful to human
beings; our hearing can be
permanently demaged and we
do not work efficiently. Even
if these did not happen, a
noisy environment is simply an
unpleasant place to be.



WHAT IS STATIC BALANCE?
It is easy to see when a

wheel mounted on a shaft is in
balance. Turn the wheel gently
several times. Does it always
stop with the same point down?
or is there no "heavy spot"? A
statically balanced rotor
shows no preferred heavy spot;
it stops anywhere. This test
is useful for getting a rough
idea of balance, but it is not
very sensitive.

A better method for a
large, heavy rotor is to place
it on a carefully leveled set
of rails. If it shows no ten-
dency to roll in any position,
it is in static balance.

Most common wheel balanc-
ing machines support the wheel
by a needle at the center of
its rotation axis. If a bubble
then indicates that the wheel
is level, it is statically
balanced.

This is the method com-
monly used with auto wheels.
The front wheels, especially,
should be statically balanced
because the reaction forces
can set up an unpleasant, and
sometimes dangerous pounding.

CENTER OF MASS:
The center of mass (CM)

is a very useful idea in the
study of dynamics and balance.
It is a sort of average posi-
tion of a body. It is the point
where (for many purposes) the
mass of a body may be assumed
to be concentrated.

How do you find the CM of
a body? First you need to un-
derstand the idea of moment,
which is a way of describing a
mass and its position. The mo-
ment of a mass is the product

The balanced
wheel spins

and where
it stops,

nobody
knows!

A statically baLanced
rotor will not roll
when placed on
level rai ls .

Static blance
of wheels is
a simple pro-
cedure.

Dynamic balance
is more com-

plicated.

of the mass and its distance
from a point.

For exainple, suppose
you have a body made up of
several small masses, where
is its CM? The CM is locat-
ed at the point where the
moments are the same on
either side of it.



The CM is important in
balance because, when a body
is supported at its CM (by a
needle, say) you know that
the moments are equal on
either side of the needle. Be-
cause of gravity, there are
weight forces on the masses.
Those weight forces in turn
produce moments of force. A
moment of force is what we
have been calling torque.

When weight torques are
equal and opposite, the body
does not tend to turn. It is
in balance. Because of this
gravitational effect, the CM
is more commonly referred to
as the center of gravity (CG).

A wheel that is in perfect
static balance may well vibrate
wildly when rotating. Something
is still wrong with it. That
something very often is dynamic
unbalance. The explanation of
dynamic unbalance is not simple
and the methods for curing it
are not easy.

The problem arises in ro-
tating objects that have some
thickness. As in static unbal-
ance, it is due to an improper
distribution of mass. The mass
may be perfectly distributed
with respect to radius but un-
equally distributed along the
axis. Thus for objects that
have both diameter and thick-
ness, both static and dynamic
balance must be considered.

To dynamically balance a
rotating object is largely
trial and error. You put on
some additional weights to bal-
ance the distribution and see
whether or not you have de-
creased the vibration.

Mhen supported at its CM in a
gravitational field3 all the
gravitational torques at work on
a body are equal and it remains
level. Hence CM = CG.

This dynamic duo is in static bal-
ance3 but try to spin it and you're
in for troub le.

YOUR EXPERIMENTS:
In the final part of

this module you will experi-
mently observe the effect of
an unbalanced rotating object,
if you haven't already. Then
you will learn some of the
techniques used to bring such
systems into static and dy-
namic balance.

Later in the module, we
will describe the reasons
why these techniques worked.



AN EXPERIMENT ....
.... TO OBSERVE THE EFFECTS OF UNBALANCE •.•.•......

The aim of this first ex-
periment is to acquaint you
with the practical effects of
static unbalance. First you
put the rotor out of balance
by adding one washer and ob-
serve its behavior. Then you
balance the rotor approximate-
ly by removing the washer, and
again observe the behavior.
You will carry out a more pre-
cise balancing operation in
the next experiment.

1) Set the
voltage supply at
80 volts. This
will produce a
low rpm so things
don't get out of
hand at the start.

2) Mount the
rotor with one
washer on one
bolt. This will
produce an unbal-
ance as seen by
the fact that the
rotor's natural
rest position is
with this bolt
down.

3) Turn on
the power supply
and observe the
behavior of the
fan and other ob-
jects on the ta-
ble as the rotor
comes up to speed.

4) Vary the
rotational speed
with the variable

You cannot measure the
vibration quantitiatively
at this point, but the dif-
ferences should be obvious
and easy to describe in
words.

This experiment is pri-
marily exploratory. The
procedure suggests some
things to do but you should
investigate the cause and
effect of unbalance to your
own satisfaction.

supply and ob-
serve the differ-
ent vibrations
that occur. You
should find that
different speeds
produce large
amplitudes for
various modes of
vibration of the
fan and of other
objects on the
table.

5) Describe
with a sketch at
least three modes
of fan vibration,
in the data table
at the end of
these experiments.
At what voltage
does the fan start
to "walk"?

6) Explore
the effects of
adding various
washers at var-
ious positions.



In the previous part you
observed the effect of rough-
ly balancing a rotor that had
been deliberately unbalanced.

Now you will balance the
same rotor carefully using a
simple stationary balancing
machine. This particular bal-
ancer is designed for balanc-
ing rotary lawn mower blades.
PROCEDURE:

1) Put 4 washers
on one boZt~ 3 on an-
other diametrically
opposite. Initially
locate them at maxi-
mum radius.

The rotor should now run
with even less vibration. You
will see that balance is
achieved when you have an
equal distribution of moments
about the axis. This is not
the same as an equal distri-
bution of masses.

Follow the general guid-
lines below.

2) PZaae the
rotator on the
statia baZanaer
as shown. The
disk will tilt
because it is
unbalanced.

3) PZaae the
spirit ZeveZ on the
aenter of the disk.
When the level is
level, the bubble
will be within the
black ring as
shown.

4) CoarseZy baZanae the disk by ad-
justing the radius of the 4 washers. You
probably cannot do it perfectly. This
shows, however, that it is not mass alone
that produces static balance.

5) FineZy baZanae the disk by adding
small pieces of solder. Cut short lengths
and wrap them around bolts. Adjust their
length until you get as perfectly bal-
anced, or level, a disk as you can. You
will probably have to put pairs of
weights on two adjacent bolts. Clamp the
solder under a nut or washer so it does
not fly off when rotated.

6) Rotate the disk on the
fan and see how well you did.
Vary the speed and see if any
resonances occur.

7) Sketah the disk on the
data page. Record the radius
of the two sets of washers
from the axis.



AN EXPERIMENT ....
.... TO OBSERVE DYNAMIC UNBALANCE .

Dynamic balance will be
discussed fully in the re-
mainder of the text, but now
the aim is for you to have
practical experience with it.
Static unbalance is easy to
detect and easy to cure. Both
operations can be done on a
simple balancing machine.

But, dynamic unbalance
is a different story. Dyna-
mic unbalance can be detected
only by a dynamic test, that
is by turning the rotor at

1) Place two iden-
tical sets of 4 washers
on opposite sides of
the disk. This change
in relative positions
of the masses is a key
feature of dynamic un-
balance. The masses and
their moments are no
longer in the same plane
perpendicular to the
rotation axis.

2) Statically balance
the disk. Adjust the posi-
tion of one (or both)
bolts for good static bal-
ance. Note that the rever-
sal of position does not
affect your ability to get
static balance.

high speed, and looking for
certain effects. .

Dynamic unbalance can
indeed cause severe vibra-
tion, but the effect you will
look for here is a slightly
different one which we shall
call wobble. The experiment
should help clarify the
meaning of wobble, but in
brief it means a motion where
the plane of the rotor no
longer stays perpendicular to
the axis of rotation.

3) Mount rotor
on fan shaft. Dyna-
mic unbalance can
be detected and
measured only by a
dynamic test.

4) Turn on
the fan at a
low voltage
(about 70-80
volts) •



You have just seen the
results of dynamic unbalance:
forces that produce a wobbl-
ing motion. The rotor no
longer stays aligned with re-
spect to the shaft. If the
rotor were rigidly attached
to the shaft, these forces
would act on the shaft it-
self. Then there would be vi-
bration of the whole fan,
excessive bearing loads, and
other problems.

Our aim here is to see

5) Stop the rota-
tion with a strobe.
First stop the motion
at the highest flash
rate that gives a
single image of the
mark on the rotor.
Then change the flash
rate slightly so that
the rotor appears to
rotate slowly, and
you can see the wobble
in "slow motion".

6) Measure wobble
amplitude by "doubling
the flash rate of the
strobe. At twice the
rpm; you will see the
two extremes of the
wobble. Read the amp-
litude along the cm
scale on the frame by
sighting over the
edge of the disc.

7) Sketch the or-
ientation of the disk
as it rotates in the
space provided in the
data page. Show the
position of the wash-
ers.

how the unbalance may be re-
moved in this simple special
case. The key word is counter-
weights: masses added so as
to keep the moments evenly
distributed in planes perpen-
dicular to the axis of rota-
tion.

By adding counterweights
these moments will be in two
planes rather than the origi-
nal one. Of course, when mass
is added, the static balance
must be checked and preserved.

PROCEDURE:

1) Add 4 washer counterweights
to each of the bolts as shown. Be
careful that the two sets of washers
in each plane ("upper" and "lower")
are arranged in exactly the same way
with respect to nuts, washers, etc.

2) Statically balance the disk
in the usual way using the static
balancer. Keep the bolts near their
maximum radius.

3) Dynamically measure and re-
cord the wobble amplitude with the
strobe as on the preceding page.

When an object ,is out of dynamic
balance this method of adding counter-
weights is the procedure for bringing
it back into balance. Unfortunately
the decision of how much to add and
where to put them is not clear and
generally must be done by trial and
error. In the final experiment you will
see a standard method that is compli-
cated but works.



Dynamic unbalance is a
common effect, particularly
with thick or long rotors,
such as electric motor arma-
tures, or crank-shafts. It is
almost never obvious where
mass should be added or how
much. Modern automobile plants
use sophisticated automatic
machinery to balance crank-
shafts. But thls lab is con-
cerned with a simple device

1) Mount the dynamicaLLy
unbaLanced disk securely on
the fan shaft. There should
be no washers or other weights
attached to the disk.

2) Mount the fan on the
fLexibLe tabLe. Be sure the
fan is seated in the slot in
the table. Wing nuts should
be tightened securely. Check
that the table bounces freely
without binding or hitting
stops.

3) Turn on the fan and
adjust the speed to the
natural resonant bouncing
frequency of the table. It
is important that you achieve
maximum amplitude of vibra-
tion since this amplitude
will be your reference for
later improvement.

Record the ampLitude.

4) Add a washer to each
of two opposing boLts. As in
the previous experiment you
should put one on one side
and one on the other side of

and a simple procedure for
measuring and correcting
dynamic unbalance on almost
any rotor.

A symmetric, but dynam-
icaLLy unbaLanced disk is
provided. Your task is to
add weights at the proper
places to bring it into dy-
namic as well as static bal-
ance.

the disk to retain static
balance.

5) Turn on the fan and
measure the bouncing ampLi-
tude. The voltage for maxi-
mum amplitude should not
have changed much but you
might have to adjust it
slightly.

Has the amplitude
decreased?

6) Move and trim the
mass untiL the bounce ampLi-
tude is zero. If the ampli-
tude is greater try the next
bolt. If the amplitude is
smaller, try more washers on
the same bolt. Keep trying
various combinations until
the amplitude is zero. The
secret is to avoid bolts
that make the vibration worse,
stay with those that improve
it. Be sure the disk is in
static balance.

7) Sketch disk and re-
cord masses added on the
data sheet.



Mount the fan
on the dynamic
balancing table.

If the amplitude is:

Large ~

f Smaller

DYNAMIC
BALANCE





THE EFFECTS OF UNBALANCE (Description and sketch of 3 modes
of fan vibration)



DYNAMIC UNBALANCE (Sketch of orientation of unbalanced disk
in rotation showing washers and positions)

FLEXIBLE TABLE BALANCER (Sketch of disk showing masses added
and their position relative to reference
marks)



STATIC UNBALANCE
UNBALANCED FORCES IN ROTATION:

Our purpose is to describe
the cause of static unbalance,
and how it leads to vibrations.
From this description it will
then be clear what steps can be

Suppose a point mass m on
a rotor is moving with rota-
tional speed w. You know from
Newton's first law that the
mass wants to keep moving in a
straight line at speed v = rw.
To make the mass rotate as
part of the rotor requires an
inward force. This force is
called a aentripetal forae and
always acts radially inward.
The magnitude of this force
can be derived (see optional
section on the next page), and
is found to be:

Fc
2= mrw

The Centripetal Forae
on a Mass Point.

This inward centripetal
force, of course, must be ex-
erted by something. In the
simple case of a weight on the
end of a chain, it is exerted
by your arm. For a mass rotat-
ing on bearings, it is the
bearings that must exert the
force.

According to Newton's
third law, if the bearing ex-
erts a force on the shaft, it
feels an equal and opposite
force. This force is called
the reaation forae, Fr. Its

taken to cure the problem.
Vibrations are caused by
forces. Thus the first
step is to understand what
forces are presented.

Fe - mrw2
The aentrip'etalforae is radi""
aU irDJJara.

Fc
~

The reaation
forae is radially
outward.

magnitude is equal to the 2
centripetal force Fr=Fc=mrw
and its direction is
radially outward on the
bearing.



2Fe • mrw

The relation for the
centripetal force on a rota-
ting mass, m, can be mathe-
matically derived. As in the
derivation in Part I we will
consider what happens to the
mass during a small time in-
terval, ~t. Referring to the
diagram, we assume that dur-
ing ~t, the mass moves from
a to b through a small angle~e.

The linear velocity, v,
at a and b is of the same
magnitude, rw, but in a dif-
ferent direction. Since ve-
locity is a vector quantity
a small additional velocity,
~v, must have been added to
produce the direction change.
From Newton's laws we know
that velocity changes are
produced by forces. From the
linear dynamic equation we
have:

~vF = m ~t.

The value of v can be de-
termined by referring to the
vector addition geometry. The
angle between va and Vb is
also ~e so that:

~v ~ v~e,
where we assume that if ~e is
small, ~v is nearly equal to
the arc. From the top diagram
we see that:

~s~e = -r
Putting this into the

previous expression we get:
~v = v ~s.

r

~v = additionaZ veZocity
required to produce direc-
tion change.

Putting this into the
force equation gives:

v ~s
F = m r ~t·

~sBut ~t = v so that:
v2

F=m-
r

And since v = rw
we have:

F 2= mrw •c
The direction of

Fc is the same as ~v,
which is radially in-
ward.



The center of mass of a
body is defined as that point
about whick all the moments
are equally distributed. A
rotational moment is simply
the product mr of a mass m
at radius r.

Begins to have meaning
if one assumes the body to
be in a gravitational field.
Then there is a force on each
mass point of mg. And if the
point can only rotate about a
fixed axis then the force be-
comes a torque of mrg (pro-
vided r = rJ.).

Thus the rotational
center of mass is that point
about which the net gravita-
tional torque is zero; and
the center of mass is iden-
tical to the center of gra-
vity.

On the previous page we
saw that the reaction force
on a rotating point mass was
mrw2. This is simply the mo-
ment (mr) times the square of
the angular speed.

If a body rotates about
its center of mass, these mo-
ments are equally distributed.
Thus the reaction force of
each mass point has an iden-
tical opposing reaction force
on the opposite side of the
rotation axis. The result is
no net reaction force on the
bearings provided that the
body rotates about its center
of mass.

CENTER OF MASS all rota-
tional moments balance.

CENTER OF GRAVITY all
gravitational torques
balance.

ROTATION ABOUT CENTER
OF MASS all reaction
forces balance.

Thus the key to static
balance is to be sure that
the body rotates about the
center of mass ••••or vice
versa ••••be sure that the
center of mass is at the
axis of rotation.



When a body rotates about
an axis that is not through
the center of mass, the reac-
tion forces on the bearings do
not all balance out. There are
greater rotational moments on
one side than the other. And
there is a net reaction force
on the bearing that rotates
with the angular speed, pull-
ing on the bearing as it goes.

The size of this net re-
action force is simple to cal-
culate. The body acts as if
all of its mass, M, were con-
centrated at the center of
mass at rotational radius, r,
the distance between the eM
and the axis of rotation. Thus
the unbaZanced reaction force
on the bearing is:

F = Mrw2•r

While r is generally
quite small, sometimes only
thousandths of an inch, M is
the whole mass of the body
and Fr can get quite large,
particularly at large w.

. A real machine, like the
fan, has several preferred
directions in which it likes
to vibrate. These modes of vi-
bration have certain natural
frequencies much like the vi-
brating reed. The direction
of these natural modes can be
at any angle.

When the disk rotates,
the unbalanced force rotates
around with it at the rota-
tion frequency. The component
of Fr in any direction oscil-
lates back and forth at this
frequency. Thus if w exactly
matches the natural frequency

When the center of mass is
not at the center of rotation,
the net reaction force on the
bearings is: Fr = Mrw2

As the body rotates, the
net reaction force on the bear-
ings rotates with it.

;\"

I
I
~~
I

I

The component of Fr in any
direction osciZZates at w and
wiU excite any naturaZ modes
at that frequency.

of a particular mode, it
will act like a driving
force in that direction and
cause that mode to oscillate
strongly.

This condition is call-
ed resonance. Different ang-
ular speeds will, of course,
excite different vibrational
modes of the fan, just as
you observed in your experi-
ment.



THE CURE FOR STATIC UNBALANCE ...
As is obvious by now, the

cure for static unbalance is
to be sure that the rotation
axis of a body coincides with
the center of mass. While it
is often difficult to move the
rotation axis, it is generally
not difficult to move the cen-
ter of mass.

A rotor on its shaft can
give a rough idea in which
direction the center of mass
is shifted since it pulls that
side down. It is only a rough
indication however since most
bearings have significant sta-
tic friction.

A considerably more sen-
sitive method is to suspend
the body horizontally at its
axis by a needle bearing, as
you did with the static bal-
ancing machine. Do you see why
this is equivalent to a ver-
tical suspension?

Sometimes it happens that
you cannot get at the rotating
system to balance it. For ex-
ample the rotor of the fan
motor may be out of balance
even though the disk is per-
fectly balanced. At some ang-
ular speed a strong, unwanted
vibration resonance may occur.
What can you do? There are
three choices:

1. Change the angular speed
so that the unbalanced
reaction force no longer
drives the vibration at
its resonant frequency.
Often this is not possible
however.

2. Change the resonant fre-
quency. This can often be
done by mounting the sy-

rotation.-
axis

e
When an unbalanced disk is sus-
pended vertically, the force of
gravity pulls the center of mass
doum.

needle bearing,'

A more sensitive method is to
suspend it horizontally at the
center of rotation on a deli-
cate needle bearing. An off
azis CM will show up as a tilt.

Mounting on a
heavy base
shifts reso-
nant frequency.

Friction mount
absorbs energy
of vibration.

stern on a heavier base,
that is change its mass.

3. Mount the machine on
some kind of damping
mount that absorbs
the energy of vibra-
tion by friction.
This prevents the amp-
litude of vibration
from building up.



DYNAMIC UNBALANCE
UNBALANCED TORQUE IN ROTATION:

To explain static unbal-
ance we looked at the forces
present and how they acted on
the bearings. To explain dy-
namic unbalance it is neces-
sary to determine if these
forces produce any torques.

The rotor on the fan was
a thin disk, almost a single
plane. When it rotated, this
plane was perpendicular to
the rotation axis. All the
reaction force lay in the
plane of the disk and were al-
so perpendicular to the axis.
When you added washers to the
disk, particularly when you
added them to opposite sides,
you began to give the disk
thickness. With thickness, the
analysis changes.

REACTION FORCES ...
Consider the thin disk

with two equal masses madded
at equal radii r, but on op-
posite sides of the disk. At
angular speed w the reaction
forces on these masses are
both mrw2. But, the reaction
forces do not act along the
same line, that is at the same
point on the axis.

... PRODUCE WOBBLE TORQUES:
. They are separated by a

d~stance 2d. Two forces like
these are sometimes called a
couple. This couple clearly
produces a torque whose magni-
tude is:

'T = 2mrw2d.
This torque tries to twist
the disc out of its normal
perpendicular position, caus-
ing it to wobble as it turns.

The disc in your experi-
ment was flexible so it bent

The dynamically unbalanced
disk was seen to flex and wobble.
If the disk were rigid, the wob-
ble torque would all act on the
motor bearings.
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Wobb le torque:

to adopt a tilted position
as it turned. (Check your
sketch of the dynamic unbal-
ance experiment.) If the
body were more rigid, then
it would not bend. Instead
the wobble torque would be
transmitted to the rotatio-
nal shaft and bearings to
produce strain, wear, and
vibration.



THE CURE FOR DYNAMIC UNBALANCE:
To eliminate dynamic un-

balance one must either redis-
tribute the mass of the rotor
so that no couples exist, or
add couples that are equal
and opposite to the ones that
are present.

Adding a couple means to
add a pair of weights (to pre-
serve static balance) on op-
posite ends of a diameter and
on opposite sides of the rotor.

In your first experiments
on dynamic unbalance, either
solution was clearcut since
the unbalanced masses were
large, you could see where
they were, and you could eas-
ily move them. In your last
experiment, as with most rota-
ting bodies, the unequal dis-
tribution of mass was neither
known or could it be moved.
Thus a trial and error proce-
dure had to be adopted to at-
tempt to improve the problem.

Simple, dynamically unbalanced
crankshaft of a 1950 Model A
Ford, a slow turning engines ...

Complex, dynamically balanced
crankshaft of a modern high
speed V-B.

A dynamically unbalance can
be balanced by ...

... redistributing
the mass along the
axis or ....

.... by adding
equal masses
on opposite
aides of the
rotor.

SOME EXAMPLES:
Dynamic unbalance oc-

curs most often in thick
rotors, rotors that extend
along the axis for some dis-
tance (d large), for ex-
ample, tires, motor arma-
tures and engine crankshafts.
Unbalance effects increase
with the square of the ang-
ular speed, so that crank-
shaft balance is of great
importance in racing and
high performance engines
that turn at ,high speed.

There are many differ-
ent techniques that are used
to dynamically balance rota-
ting bodies. In general each
specific balancing problem
leads to a specific tech-
nique to help reduce the
guesswork. On the next page
are a couple of examples of
ways to reduce the number of
trials and minimize the er-
rors.



Static balancers are es-
sentially the same as the de-
vice you used to statically
balance the disk. They are
easy to use and are effective
in most cases.

Auto wheels, especially
front wheels, should be sta-
tically balanced. But wide
tires, as any thick rotor,
can be dynamically unbalanced,
even though statically bal-
anced. In fact, careless
placement of static balancing
weights may actually cause
dynamic unbalance.

Automobile dynamic wheel
balancers are essentially
wobble detectors. The wheel
is driven at high speed by an
electric motor and the wobble
amplitude is observed. One
technique is to mount a small
probe near the rim. As the
wheel wobbles, the position
of the probe, when the tire
just strikes it, measures the
wobble amplitude. The probe
can be used to trigger a
strobe and thus indicate where
masses should be added on the
wheel.

LARGE ROTORS:
The dynamic balancing of

large rotors, such as large
generator armatures, is essen-
tial if they are to run at
high speeds. There is a fairly
standard procedure that is
followed for such rotors, pro-
vided you can get at both ends
to add or remove mass. It

Static wheeZ baZancing is
simpZe. . . .

. . . .but dynamic wheeZ
baZancing requires com-
pZicated equipment and
good judgement.

utilizes a flexible table much
like the one you used but the
procedure is somewhat differ-
ent. The procedure results in
both static and dynamic bal-
ance of the rotor. On the next
page this balancing procedure
is illustrated.



The rotating machine is
mounted on a flexible table
as shown. The table is mount-
ed on two sets of springs. It
can be pivoted about either
of two axes. This arrangement
has a resonant frequency of
vibration and the amplitude
can become large when the
angular speed equals this
frequency.

Step I consists in put-
ting a shaft through I so
that the table can pivot a-
bout that axis. The right end
is then free to vibrate on
the spring. The rotor is run
and its speed is adjusted for
maximum vibration amplitude -
resonance. The rotor is stop-
ped and mass is added any-
where on the right end plane.
It is then run again, and the
new vibration amplitude ob-
served. Again it is stopped,
the mass is moved one quarter
turn around the rotor, and
the vibration amplitude ob-
served. This trial and error
procedure is repeated until
the vibration amplitude has
been reduced to zero.

Adding only one mass has
obviously statically unbalanc-
ed the rotor. Clearly this
must be a two-step process.

In step 2 a shaft is put
through the right hand table
axis. The table now pivots
about this, and vibrates at
the left end. Note that this
step is necessary in order to
achieve both static and dynam-
ic balance. The same trial and
error procedure is repeated
as before, masses being added
to the left end plane. The
object is again to reduce the

The motor used to spin the rotor
at the resonant bouncing fre-
quency of the table is not shown~

~free
vibration

Weights are added by trial and
error to the right end of the
rotor until the vibration amp-
litude is reduced to zero.

Weights are then added to the
left end of the rotor. When the
amplitude is zero, the rotor is
both statically and dynamically
balanced.
the vibration amplitude to
zero.

Although the details
are complicated, the basic
idea of this procedure is
simple. The table is a vi-
bration amplifier that in-
creases the vibration ampli-
tude. By eliminating all
vibrations you remove the
reaction forces and the
wobble torques.



Static and dynamic bal-
ance are important because
unbalance can cause vibration
and unnecessary large forces
on bearings and moving parts.
These lead to noise, rapid
wear and breakdown.

Mass points on rotating
bodies are acted on by centri-
petal forces. These act ra-
dially inward and are neces-
sary to deflect the masses
into circular paths. The
forces are transmitted to the
mass points by the rotor. But
they must corne from the rotor
shaft and bearings. By New-
ton's third law there is an
outward reaction force on the
shaft and bearings. For each
mass point this outward reac-
tion force has magnitude.

2= mrw .

With a statically balanc-
ed rotor (one spinning about
its CM) the net reaction force
is zero. When a rotor is not
statically balanced, the net
reaction force is not zero.
This force continually chang-
es direction as the rotor
turns. It puts strain on the
rotor and bearings and can
cause strong vibrations, par-
ticularly if the angular
speed is the same as a fre-
quency of natural vibration
of the system.

Static balance exists
when an object, supported at
its center of mass, has no
tendency to turn. That is, the
net gravitational torque is
zero. When rotating on the CM

as axis, the rotor turns
smoothly, without vibration.

Static unblance is cor-
rected by adding masses at
a position diametrically
opposite to the CM. Static
balancing machines use a
level to indicate when the
CM is at the point of sup-
port.

Degree of unbalance
depends on the position of
the CM with respect to the
axis. The reaction force on
the bearings is given by:

2Ff = Mrw ,

where M is the total mass
of the rotor and r is the
separation of the rotational
axis and the CM.

Dynamic unbalance oc-
curs when two masses on a
rotor are located at two
different points along the
axis. The reaction forces
on the two masses form a
couple that results in a
torque. This torque tends
to make the rotor and the
shaft wobble about an axis
perpendicular to the rota-
tion axis.

Dynamicunblance is
corrected by adding pairs
of masses in two planes
separated along the axis.
Pairs of mass are needed
to maintain static bal-
ance.



1. Suppose you cannot add
masses to a statically
unbalanced rotor, but
were permitted to drill
holes in it. What would
you do to achieve bal-
ance?

2. State several impor-
tant properties of CM.

3. The angular speed of an
unbalanced rotor in-
creased from 1000rpm to
2000rpm. How much are
unbalance effects in-
creased?

A certian rotor has a
mass of 10kgi its CM
is lcm from the axis.
Where should you place
a O.lkg weight?

A certain rotor con-
sists of a very light
rod 10cm long with a
2kg mass on the end
of it. The light rod
also extends in the
diametrically opposite
direction. You have a
200g mass. Could you
balance this rotor?
How?

4. Could you have dy-
n~"ic unbalance in
a rotor made in the
shape of a thin
flat disk? Explain.

S. Can you suggest a
reason why v-a
engines are now
the most common,
having completely
replaced straight
eights and even
most sixes?

A rotor has a total
mass of Skg and its
CM is lcm from the
axis. What is the
reaction force on
the bearings at
3000 rev/min?

The bearings on a
certain rotor can
withstand safely a
reaction force of
lOOnt, about 201b.
The rotor has a
mass of IOkg and
the eM is lmm from
the axis. How fast
can the rotor turn?

Dynamic unbalance
results from two
lOOg masses at a
radius of 30cm.
They are separated
along the axis by
2cm. Calculate the
wobble torque at
300 rad/sec.




