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Preface

The prefaces to the first and second editions of the PSSC Physics Laboratory
Guide contained a strong plea for letting the student experiment in the labora-
tory without being told in advance what he is supposed to find. This general
style of learning science is now so well established that we feel it would be
superfluous to repeat the plea here.

As might be expected, much of the material in this Laboratory Guide has
been taken over from the earlier editions. However, some significant addi-
tions, deletions, and revisions should be mentioned.

There are six new experiments. Several previous experiments have been
rewritten, and ten were dropped. These changes were made to increase the
cohesion between the experimental and theoretical parts of the course.

Like the textbook, the Laboratory Guide is the result of the efforts of
many people. For detailed acknowledgments, see the Appendix to the text-
book.

Uri Haber-Schaim
Judson B. Cross
John H. Dodge
James A. Walter
August 1970



To The Student

This Guide is designed to help you with your laboratory work. It provides
a general introduction to the problems at hand, gives you technical hints, but
leaves the thinking to you.

Throughout this Guide you will find many questions. Finding the answer
to these questions may sometimes require a little thought about what you have
done before, or it may require a short calculation. Sometimes more experi-
mentation will be called for. It is up to you to decide what to do in each case.

Good working habits are useful. Always read the whole description of an
experiment before you begin to work so you will have a clear understanding
of what you are trying to do. Keep a clear record of your experiment as you
perform it. Then you will have the data to refer to when needed, and sufficient
information to know what you did.

In the course of an experiment, whenever necessary, repeat your measure-
ments a few times. Several readings are usually better than one. You should
decide when more measurements are needed.

Many of these experiments require the help of one or more partners. Dis-
cuss results with your partners. You may learn more by working together on
an analysis than by going at it alone.

You will probably not find it possible to do all the parts of every experi-
ment. Do not rush; you will get more out of doing half the things suggested
in an experiment thoroughly than all of them superficially. Often, part of
the analysis may be done at home.

The apparatus used in most experiments is quite simple. You can make
many items yourself and experiment further at home.
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Analysis of an
Experiment 1

The presentation and analysis of experimental results is an essential part of
physics. In Table 1 are the results of an experiment. You are asked to present
and analyze these results in a form which will enable you to predict the out-
come of similar experiments.

The experiment was an investigation of the time it takes water to pour out
of a can through a hole in the bottom. As you would expect, this time depends
on the size of the hole and the amount of water in the can.

To find the dependence on the size of the hole, four large cylindrical con-
tainers of water of the same size were emptied through relatively small circular
openings of different diameters. To find the dependence on the amount of
water, the same containers were filled to different heights.

Each measurement was repeated several times, and the averages of the
times (in seconds) that each container took to empty have been entered in the
table. A stop watch operated by a human hand cannot be trusted to measure
less than a tenth of a second. The last digit in each time entry in the table may
be in error by one unit either way. Therefore, the relative (or fractional) error
is larger for shorter times than for longer times.

h
in em

30.0 10.0 4.0 1.0
d

in em

1.5 73.0 43.5 26.7 13.5
2.0 41.2 23.7 15.0 7.2
3.0 18.4 10.5 6.8 3.7
5.0 6.8 3.9 2.2 1.5 Table 1

Times to Empty (see)

All the information we shall use is in the table, but a graphical presentation
will enable us to make predictions and will greatly facilitate the discovery of
mathematical relationships.

First, plot the time versus the diameter of the opening for a constant height,
say 30.0 em. It is customary to mark the independent variable (in this case, the



diameter d) on the horizontal axis and the dependent variable (here the time
t) on the vertical axis. To get maximum accuracy on your plot, you will wish
the curve to extend across the whole sheet of paper. Choose your scales on
the two axes accordingly, without making them awkward to read.

Connect the points by a smooth curve. Is there just one way of doing this?
From your curve, how accurately can you predict the time it would take to
empty the same container if the diameter of the opening was 4.0 cm? 8.0 cm?

Although you can use the curve to interpolate between your measurements
and roughly extrapolate beyond them, you have not yet found an algebraic ex-
pression for the relationship between t and d. From your graph you can see
that t decreases rather rapidly with d; this suggests some inverse relationship.
Furthermore, you may argue that the time of flow should be simply related to
the area of the opening, since the larger the area of the opening, the more
water will flow through it in the same time. This suggests trying a plot of t
versus lid 2.

To do this, add a column for the values of 1Id 2 in your notebook and, again
choosing a convenient scale, plot t versus 1Id 2 and connect the points with a
smooth curve. What do you find? Was your conjecture correct? Can you
write down the algebraic relation between t and d for the particular height of
water used?

To find whether this kind of relationship between t and d also holds when
the container is filled to different heights, on the same sheet of graph paper plot
the graphs of t versus 1Id 2 for the other heights. What do you conclude?

Notice that the graph for h = 1.0 cm extends upward very slightly. Make
a special plot of these data on a larger time scale so that you will use the whole
sheet. What do you observe? On the basis of your data, what can you say
about the algebraic relation between t and d for h = 1.0 cm?

Now investigate the dependence of t on h when the diameter of the opening
stays fixed. Take the case of d = 1.5 cm, which is the first row. Make a plot
in which h will be marked on the horizontal axis and connect your points by
a curve. Extrapolate the curve toward the origin. Does it pass through it?
Would you expect it to do so?

How can you use your plots of t versus 1Id 2 to predict t for h = 20.0 cm and
d= 4.0cm?

There is no simple geometric consideration to guide us to the right mathe-
matical relation between t and h. You can try to guess it from the curve. It
may be helpful to rotate the graph paper through 90° and look first at h as a
function of t, and then at t as a function of h. If you succeed, check by proper
graphing to see if the same kind of relation between t and h holds for d =
5.0cm.

If you are familiar with logarithms, you can check to see if the relation be-
longs to a general class of relations, such as apower law, t DC hn• To do this,
plot log t versus log h (or simply t versus h on log-log paper). What do you
obtain? What is the value of n?

Can you find the general expression for time of flow as a function of both h
and d? Calculate t for h = 20.0 cm and d = 4.0 cm and compare the answer
with that found graphically. Which do you think is more reliable?



Reflection from a
Plane Mirror 2
Hold a pencil vertically at arm's length. In your other hand, hold a second
pencil about 15 cm closer than the first. Without moving the pencils, look at
them while you move your head from side to side. Which way does the nearer
pencil appear to move with respect to the one behind it when you move your
head to the left? Now move the pencils closer together and observe the ap-
parent relative motion as you move your head. Where must the pencils be if
there is to be no apparent relative motion, that is, no parallax, between them?

Now we shall use parallax to locate the image of a nail seen in a plane mir-
ror. Support a plane mirror vertically on the table by fastening it to a wood
block with a rubber band. Stand a nail on its head about 10 cm in front of the
mirror. Where do you think the image of the nail is? Move your head from
side to side while looking at the nail and the image. Is the image in front of, at
the same place as, or behind the real nail? Locate the position of the image of
the nail by moving a second nail around until there is no parallax between it
and the image of the first nail. In this way, locate the position of the image for
several positions of the object. How do the distances of the image and object
from the reflecting surface compare?

We can also locate the position of an object by drawing rays which show
the direction in which light travels from it to our eye. Stick a pin vertically
into a piece of paper resting on a sheet of soft cardboard. This will be the ob-
ject pin. Establish the direction in which light comes to your eye from the pin
by sticking two additional pins into the paper along the line of sight. Your
eye should be at arm's length from the pins as you stick them in place so that
all three pins will be in clear focus simultaneously. Look at the object pin
from several widely different directions and, with more pins, mark the new
lines of sight to the object pin. Where do these lines intersect?

We can use the same method to locate an image. On a fresh piece of paper,
locate the position of the image of a pin seen in a plane mirror by tracing at
least three rays from widely different directions. Mark the position of the
mirror before removing it. Where do the lines of sight converge?

Draw rays showing the path of the light from the object pin to the points on
the mirror where the light was reflected to your eye. What do you conclude
about the angles formed between the mirror surface and the light paths?

Arrange two mirrors at right angles on the paper with a nail as an object
somewhere between them. Locate all the images by parallax. From what you
have learned about reflection in this experiment, show that these images are
where you would expect to find them.



3 Refraction

It is convenient to study the refraction of light in terms of the angle of in-
cidence and the angle of refraction. When light passes from air into water,
for example, the angle of refraction is the angle between a ray in the water and
the normal to the water surface. In this experiment we shall try to find the rela-
tion between this angle and the angle of incidence.

Use a pin to scratch a vertical line down the middle of the straight side of a
semicircular, transparent plastic box. Fill the box half full of water and align
it on a sheet of polar graph paper resting on soft cardboard as shown in Fig. 1,
making sure the bottom of the vertical line on the box falls on the center of the
graph paper. Stick a pin on the line passing beneath the center of the box as
shown in the figure. Be sure the pin is vertical.

Now look at the pin through the water from the curved side and move your
head until the pin and the vertical mark on the box are in line. Mark this line
of sight with another pin. What do you conclude about the bending of light
as it passes from air into water and from water into air at an angle of incidence
of 0°?



Change the position of the first pin to obtain an angle of incidence of about
20°. With the second pin, mark the path of light going from the first pin to the
vertical line on the box and through the water. Repeat this for angles of in-
cidence up to about 80°. To ensure a sharp image of the first pin at large
angles, it should never be placed more than 4 cm away from the vertical line
on the box. (The pinholes give a permanent record of the angles.)

Is the difference between the angles of incidence and of refraction constant?
Is their ratio constant?

Plot the angle of refraction as a function of the angle of incidence. Also plot
the sine of the angle of refraction as a function of the sine of the angle of in-
cidence. What simple mathematical relation do you think best describes the
refraction of light?

Is the path of the light through the water the same when its direction is re-
versed? Investigate this with your apparatus.

Can you predict how light will bend when it goes obliquely through a block
of glass with parallel sides?

Repeat the experiment, using another liquid in the box; again plot the sine of
the angle of refraction as a function of the sine of the angle of incidence." Does
this liquid refract differently from water?



4 Images Formed by a
Converging Lens

Look through a converging lens at an object. Is the image you see larger or
smaller than the object? Is it right side up or upside down? Do the size and
position of the image change when you move the lens with respect to the
object?

To investigate the images formed by a converging lens, arrange a lens and a
lighted flashlight bulb on a long strip of paper as shown in Fig. 1. Start with
the bulb at one end of the paper tape and locate its image by parallax. Is the
image right side up or upside down?

Now move the object toward the lens in small steps, marking and labeling
the positions of both object and image as you go. Continue this until the image
moves off the end of the tape and can no longer be recorded. How does the
change in the position of the image compare with that of the object? Where
(on your tape) do you expect the image to be when the object is at least several
meters away? Check it. With the object far away, you may find it easier to
locate its image on a piece of paper. The location of the image when the ob-
ject is very far away is the principal focus of the lens. How can you convince
yourself that the lens has two principal foci, one on each side and at the same
distance from the center?

Now place the bulb as close to the lens as possible and again locate the image
by parallax. Is it upside down or right side up? Again move the object away
from the lens in small steps, marking and labeling the positions of object and
image until the image is no longer on the tape.

Measure So and SI, the distance from the principal foci to the object and
image respectively, for the pairs of points. (The distance Sois measured from
the principal focus on the object side of the lens and SI is always measured
from the principal focus on the opposite side from the object.) Since SIclearly
decreases when Soincreases, try plotting SIas a function of l/So. What do you
conclude about the mathematical relation between Soand SI?

Where will the image be if the object is placed at the principal focus? Can
you see it?





5 A Diverging Lens

You could study the properties of a diverging lens by formmg images as
you did with the converging lens in Experiment 4. However, you may also
investigate the properties of a lens by observing its effect on a parallel light
beam. You can use a light bulb placed at the principal focus of a converging
lens to get the parallel beam. It is best to work with a narrow beam which you
can make by mounting the converging lens directly behind a barrier with a
circular hole. Both lens and barrier can be supported by a piece of plasticine as
in Experiment 4.

Now let the parallel beam pass through the diverging lens and strike a piece
of paper. Measure the diameter of the light circle for different distances from
the paper to the lens. Plot the diameter of the circle as a function of the dis-
tance. From the graph can you find the principal foci? Can you get a magni-
fied image with a diverging lens? Can you get a real image with a diverging
lens?

Now place the light bulb at one of the principal foci. Try to estimate the size
of the image compared to the size of the object and to find how far behind the
lens the image is formed. See if you can support your conclusions by theo-
retical considerations, for example, by sketching a few rays from the top of the
object.



The "Refraction"
of Particles 6

A steel ball rolling across a horizontal surface moves in a straight line at
nearly constant speed. If the ball intercepts a slope obliquely, the speed it
gains as it rolls down the slope will change its direction. At the bottom of the
slope it will move off in a straight line in a direction different from its original
direction.

The path of a ball moving this way resembles the path of light as it is re-
fracted in going, for example, from air into glass. In going from the top to the
bottom of the slope, the ball changes direction; at the interface between two
media, light changes direction. In the model, therefore, the upper level cor-
responds to one medium (air); the lower level corresponds to the other
medium (glass); the slope corresponds to the interface between them.

Examine the paths of "refracted" particles to see if they change direction
according to Snell's law, with the apparatus shown in Fig. 1. Letting the steel

Figure 1
Arrange two horizontal surfaces connected by a short slope. Make sure that the two surfaces
are level. Tape a sheet of white paper on each surface so that the edges coincide with the top
and bottom edges of the slope and place sheets of soft carbon paper over the white sheets.



ball roll down the full length of the launching ramp in different directions will
correspond to different angles of incidence. Remove the carbon paper and,
for identification, label the tracks made by the ball on the upper and lower
planes after each run. Why must you be careful to start the ball from the same
point on the launching ramp?

Measure and record the angles of incidence and refraction as measured
from normals to the horizontal edges of the slope. Can this change in direc-
tion of the ball be described by Snell's law? What does this particle model of
light predict about the speed of light in water compared with its speed in air?

Could you make a "lens" that would focus rolling balls?



Waves on a Coil
Spring 7

You probably have seen various kinds of waves but have not experimented
with them. With this experiment you will begin a detailed study of waves.

While your partner holds one end of a coil spring on a smooth floor, pUll on
the other end untU the spring is stretched to a length of about 10 meters. With
a little practice you will learn to generate a short, easily observed pulse. Look
at the pulse as it moves along the spring. Does its shape change? Does its
speed change?

Shake some pulses of different sizes and shapes. Does the speed of propaga-
tion depend on the size of the pulse? To find the speed more accurately you
can let the pulse go back and forth a few times, assuming that the speed of the
pulse does not change upon reflection. How do you check this assumption?

Change the tension in the spring. Does this affect the speed of the pulse?
Would you consider two springs of the same material stretched to different
lengths to be the same or different media?

You and your partner can send two pulses at the same time. What happens
to the pulses as they collide? Try it with pulses of different sizes and shapes,
traveling along the same side and along opposite sides of the spring.

When the pulses meet, how does the maximum displacement of the spring
compare with the maximum displacement of each pulse alone? You can de-
termine the largest displacement of an individual pulse by moving your hand
a measured distance as it generates the pulse. A third partner can mark on the
floor with chalk the largest displacement of the spring when the pulses meet.

You can investigate the passage of waves from one medium to another by
tying together two coil springs on which waves travel with different speeds
(Fig. 1). Send a pulse first in one direction and then in the other. What hap-
pens when the pulses reach the junction between the two springs?



Tie a spring to a long, thin thread (Fig. 2). How does a pulse sent along the
spring reflect when it reaches the thread? How does this reflection compare
with that at a fixed end? Is the speed of the pulse on the thread greater or less
than that on the spring?



Pulses in a Ripple
Tank 8

Set up a ripple tank, screen, and light source as shown in Fig. 1. Fill the
tank with water to a depth of ~ to % cm and measure the depth at all four
corners to be sure the tank is level.



Figure 2
Shows how damper is placed.

You now have a very handy tool for studying the behavior of waves; it has
an advantage over the coil spring, since the direction of propagation of the
waves is not restricted to a line. To see this, just touch the water with your
finger tip. What is the shape of the pulse you see on the screen? Is the speed of
the pulse the same in all directions?

You can also generate straight pulses in the ripple tank by rolling a dowel
through a fraction of a revolution in the water. (Place your hand flat on top
of the rod and then move it forward about a centimeter.) Practice making
such pulses until you can make them give sharp, bright images on the screen.
Do the pulses remain straight as they move along the tank?

Place a straight barrier in the tank and generate pulses that strike it at an
angle of incidence of 0°. In what direction do they reflect? Reflect pulses at
different angles of incidence. Are the reflected pulses straight? How does the
angle of reflection compare with the angle of incidence?

Instead of making direct measurements to answer the last question quantita-
tively, you can study a few situations which will clearly demonstrate the rela-
tion between the two angles. For example, observe how a circular pulse
reflects from a straight barrier. Can you locate the virtual source of the re-
flected pulse (the image of the source of the incident pulse)? How would you
explain the result?



Parabolic Mirrors 9

Try using a rectangular strip of metal bent in the form of a parabola to
reflect straight pulses and periodic waves in a ripple tank. Have the waves
reflect from the concave side of the parabola. How are the waves reflected?
Try to follow the motion of several small segments of the wave fronts. How
would you indicate the direction of motion of each segment? Draw a diagram
using rays to show the path of the waves. How far from the parabola along the
axis do the waves converge? What happens if you dip your finger in still water
at the point where the waves converge?

If the metal parabola is placed on a white paper you can observe the paths
of light waves reflected from it. Use a distant bright lamp as a source of
light. How does the reflection of the light compare with that of the water
waves? Does the light converge at the same point as the water waves?



10 Periodic Waves

The relation v = fA for the speed, frequency, and wavelength of a periodic
wave holds for all periodic waves. We shall now apply this relation to waves
in the ripple tank: and on a coil spring.

Set up the straight wave generator as shown in Fig. 1 (the water should be
~ to % cm deep). Practice using it at various frequencies. Look at the waves
through your stroboscope (2 or 4 open slits) and "stop" their motion.

Adjust the wave generator to a low frequency and have your partner help
you measure the frequency of rotation of the stroboscope while you "stop" the
waves. How is this frequency related to that of the waves?

To find the wavelength, "stop" the wave pattern with the stroboscope and
have your partner place two pencils or rulers parallel to the waves and several
wavelengths apart.

Make several measurements of frequency and wavelength and calculate the



speed of propagation. How accurate is your determination of the speed?
Notice that you have measured the wavelength of the image of the waves on
the screen. How is this apparent wavelength related to the true wavelength
of the water waves?

The wave pattern may also be stopped by placing a barrier in the middle
of the tank as shown in Fig. 2. The incident and reflected waves superpose
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to give a stationary pattern-that is, a standing wave. How does the distance
between two bright bars in the standing wave compare with that in the traveling
wave? Can you measure the wavelength from the standing wave pattern?

Can you detect a change in speed when the depth of water is changed to
about 2 cm?

Moving your hand only slightly, shake a periodic wave into a coil spring.
Adjust the frequency until a standing wave builds up. By measuring wave-
length and frequency, determine the speed of the wave on the spring.

Without changing the length of the spring, can you produce standing waves
of any wavelength you choose?

If you have two coil springs on which pulses travel at different speeds, hook
them together, end to end. Try to generate a standing wave in both. Fix one
end of the pair and shake the other end. How do the frequencies, the wave-
lengths, and the speeds in the two media compare?



11 Refraction of Waves

In Experiment 10 we found that the speed of water waves depends on the
depth of the water. Two different depths of water therefore constitute two
different media in which waves can be propagated. This suggests that water
waves can be refracted, for example, by allowing them to travel from deep
water into shallow water.

Support a glass plate in the ripple tank so that its top surface is at least 1.5
cm above the bottom of the tank. Add water to the tank until it is no more
than 0.2 cm deep over the glass plate. Be sure the depth of the water is uniform
over the glass plate.

What do you predict will happen if straight periodic waves originating in
the deep water cross into the shallower water when the boundary between the
two media is parallel to the wave generator (Fig. I)? Using very low-fre-
quency waves, check your prediction with a stroboscope.
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Now turn the glass plate so that the boundary is no longer parallel to the
incident waves (Fig. 2). Are the refracted waves straight? How does the
angle of refraction compare with the angle of incidence? How do the wave-
lengths in the two sections compare? What about the speeds? While keeping
the generator running (to keep the frequency constant) try other angles of
incidence.

Does a wave model agree with the refraction of light better than a particle
model if we consider in which medium the speed of light is greater?

To establish the quantitative relation between the angles of incidence and
refraction requires considerable care. Keeping the frequency constant, you
can measure the angle of refraction for four or five different angles of inci-
dence. Over what range should you choose the angles of incidence? What
do you conclude from your results?



12 Waves and Obstacles

An opaque object placed in the path of a parallel beam of light will cast a
sharp shadow on a screen behind it. The shadow will be the same size as the
object. What happens when we place an obstacle in the path of a straight
wave?

Place a small, smooth paraffin block in the ripple tank about 10 cm from
the straight wave generator (Fig. 1), and generate periodic waves of long
wavelength. Do the waves continue in their straight path on both sides of the
block? Could you sense the presence of the block by looking at the pattern
only near the far end of the screen? Does the block cast a sharp shadow?

How is the pattern behind the block affected when the wavelength is re-
duced by increasing the frequency? (To obtain clean waves at high frequency,
the generator must be very smooth. Make sure there are no bubbles on its
edge. ) At high frequency the pattern is best seen by viewing it through the
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stroboscope with all slits open. Under what conditions would you expect the
block to cast a sharp shadow?

We can let a parallel beam of light pass through a small opening. If a screen
is held behind the opening, we shall see a light spot equal in size to the opening.

You can produce an analogous situation in the ripple tank (Fig. 2). Are
waves of long wavelength still straight beyond the slit? Do the waves continue
to move in their original direction? What happens when you decrease the
wavelength step by step? Show in a few sketches how the pattern changes.

Now that you have observed the effect of the wavelength on the wave pat-
tern behind the slit, how does changing the width of the slit affect the pattern?
Try it with a medium wavelength. How must you adjust the wavelength to
compensate for the change in pattern?
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13 Waves from Two Point
Sources

What will happen if two point sources near each other generate periodic waves
of the same frequency? Try it in the ripple tank with the two point sources
attached to the straight wave generator about 5 cm apart. How would you
describe the resulting pattern? Are there regions where the waves from the
two sources cancel each other at all times? How does the pattern change
when you change the frequency?

Change the distance between the sources without stopping the motor (to
keep the frequency as nearly constant as possible). How does this affect the
pattern?

By applying the principle of superposition you have learned that for two
point sources in phase, the direction of the nth nodal line far from the sources
is given by

sinOn=~= (n -i) J.
Check this prediction by finding the wavelength from the above relation,

measuring x, L, n, and d, and comparing it with a direct measurement of the
wavelength.

You will recall that straight waves passing through a narrow slit are strongly
diffracted. If the slits are narrow enough, they will act like point sources. Can
you repeat the present experiment, using the straight wave generator and two
slits made with an arrangement of paraffin blocks?



Interference and Phase 14

In the last experiment we investigated the interference pattern produced by
two point sources in phase. In this experiment we shall learn how a change
in the phase delay between the two point sources affects the direction of the
nodal lines in the interference pattern.

A generator in which the phase delay can be adjusted is shown in Fig. 1.
Choose a separation between the sources and a wavelength similar to those
used in the preceding experiment, and set the sources in phase. Do you obtain
the same kind of pattern you obtained with your regular generator?

Now change the phase in small steps and observe the change in the direc-
tion of the nodal lines. Using the in-phase pattern as a reference, how does
the position of the first nodal line change as you change the phase delay from
zero to one? How does the position of the second nodal line change?

How would you expect the interference pattern to look if you could change
the phase of the sources while the generator operates?

Figure 1
The two plastic dowels on both sides
of the motor are mounted off center.
If both plastic set screws are up at
the same time, the sources are in
phase. If one is up when the other
is down, as shown in the photograph,
the phase delay is one-half.



15 Young's Experiment

We have seen the interference pattern made by two point sources in the ripple
tank. If we looked at two light sources in phase, we would expect to see light
of maximum intensity in certain directions and no light in other directions
(the directions of the nodal lines). From the direction of the nodal lines and
the separation of the sources we can calculate the wavelength of light.

held lightly

together

coated
slide

Figure 1
Coat a glass slide with a colloidal suspension of graphite and let it dry. Scratch a pair of slits
as shown, holding the razor blades tightly together and using hard pressure. Make several
pairs of slits. Select for use those which show at least three clear, white lines when you look
at the showcase lamp. Scratch a "window" across each pair of slits. This will enable you to
see the pattern through the slits and read a scale at the same time.

To prevent damage to the slits, it is worthwhile to cover the coated slide with a plain slide
and tape them together.
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Figure 3
The interference pattern and the paper markers on the ruler can be seen simultaneously by
looking through the slits and the "window" at the same time. The cellophane is held by
rubber bands.



Two narrow slits illuminated by a showcase lamp will provide the two
sources. Their preparation is explained in Fig. 1. Look through the slits
toward the filament of the light bulb from a distance of about 2 meters. By
using Fig. 2, explain why you see dark and light bars.

Can you suggest why the bars near the end of the pattern are colored? How
does covering part of the bulb with red cellophane affect the pattern?

Now cover the whole bulb with red cellophane and place a ruler slightly
above it as shown in Fig. 3. How will you determine sin On for the farthest
nodal line that is easily visible? By measuring the thickness of one of the
razor blades with a micrometer, you can determine the separation of the slits.
What is the wavelength of red light?

Repeat your measurements to find the source of the largest error. How
accurate is your determination of the wavelength?

Cover part of the bulb with red cellophane and part with blue. Which color
has the shorter wavelength?

How is the interference pattern affected when you turn the slide to form
a horizontal angle of about 30° with the line of sight, instead of 90°? How do
you explain this?



Diffraction of Light
by a Single Slit 16

In preparing the double slits for Experiment 15 you may have made some
single slits inadvertently and noticed that they also showed a pattern of dark
and light bars. To study them further, scratch several single slits, using both
a needle and a razor blade.

Compare the pattern obtained with the double slits with the pattern of the
single slits. Use both white and red light. As you look at the bulb through
a double slit, try blocking off one slit of the pair by holding a razor blade behind
the slide. What happens?

It is quite difficult to measure the width of the slits directly. However, you
can determine it by using the value you found for the wavelength of red light,
and the theory of single-slit interference.



17 Resolution

We can study resolution qualitatively by looking through small apertures at
two small light sources that are close together. The light sources can be tiny
holes in aluminum foil placed in front of a ripple-tank bulb, and the apertures
we look through can be holes of different sizes punched in another piece of
aluminum foil. Figure 1 shows such a setup.

Look at the two sources with one eye from a distance of about one meter.
Be sure that bright light, directly from the filament, reaches your eye through
the two holes that make up the two sources. Can you resolve the sources into

aluminum foil _------- --- ------

Figure 1
To make the sources, use a needle to punch two holes about 3/4 cm apart in a piece of
aluminum foil. Mount the foil directly in front of the filament of the 150-watt bulb.

The holes through which the sources are viewed are shown at the right. To make these
holes, puncture a strip of foil with the tip of a needle, making the largest hole the thickness
of the needle and the smallest just large enough to see light through.



two separate points of light with your eye? How large is the aperture through
which you view the sources?

Look at the sources through one of the middle-sized apertures. Can you
resolve the two sources? Now increase your distance from the sources and
observe the change in their appearance. Find the distance where the sources
are just resolved. At this distance look at the two sources through each of the
different-sized apertures and sketch their appearances. Why does the resolu-
tion of the sources depend on their distance from the aperture? Why does it
depend on the size of the aperture?

While looking at the sources through the aperture that just resolves them,
have your partner hold first red and then blue cellophane in front of the
sources. How does the wavelength of the light affect the resolution? How
do you explain this effect?

How would the sources appear if they were larger but the distance between
their inner edges were the same?



18 Measurement of Short
Distances by Interference

A thin layer of air between two glass plates produces light effects similar to
those seen on a soap bubble. To see this, place two freshly cleaned glass
plates, about 20 cm long, on a black background. Darken the room and illu-
minate the plates with green or yellow light. If the glass plates are very flat,
you will see a few irregular bands of light reflected from the glass. What
causes these bands?

Press down on the plates with a pencil. Can you make one of the bright
bands move and take the place of an adjacent band? If so, how much closer
have you pushed the top plate to the bottom one at that point?

You can measure the thickness of a piece of very thin material by inserting
it between the plates at one end (Fig. 1). Be sure that the material is smooth
and that the plates are very clean. (Hold the plates together tightly with
rubber bands close to the ends.)

How much does the separation of the plates change between two adjacent
bright bands? Count the number of bright bands in a 2-cm span. (A mag-
nifying lens may help.) What is the thickness of the material? Compare your
result with that obtained with a micrometer caliper. Which is more accurate?

What limits the range of thickness that can be measured in this way?





19 Motion: Velocity
and Acceleration

Studying the motion of an object requires a record of the object's position at
different times, preferably at regular time intervals. With such a record, you
can study quite irregular motion-for example, the motion of your hand
while you walk.

Set up the timer as shown in Fig. 1, grasp the end of the tape in your hand,
and walk several steps, swinging your hand freely as you pull the tape, while
your partner operates the timer.

If you choose the time interval between two consecutive marks as a unit of
time, a "tick," what does the distance between any two adjacent marks repre-



sent? From an inspection of your tape, can you find where your velocity
was highest? Where it was lowest? Can you find where the acceleration was
greatest? Where it was smallest?

Starting at any point near the beginning, plot a graph of position versus
time. Since a tick may be too small a unit of time, it will be more convenient
to use 4 ticks (which you can call a "tock").

You can also obtain an approximate velocity vs. time graph directly from
the tape, by plotting the average velocity over a one-tock interval as a func-
tion of time. This average velocity is an approximation for the instantaneous
velocity at the middle of the interval. For example, the average velocity
between time t = 1 and t = 2 in Fig. 2 is 6 cm/tock. This is an approxima-
tion of the instantaneous velocity at t = 1.5.

t = 1.5

t = 0 t = 1

~
t = 2

• • • • • • • •I~ .16 em

You can check a few points on this by finding the slope of position vs. time
graph at corresponding points. How closely do they agree?

From your velocity vs. time graph, plot the position vs. time by measuring
the area under the curve as a function of time. Compare the positions found
this way with the positions measured directly on the tape.

From the plot of velocity vs. time, make a plot of acceleration vs. time.
How good was your early guess as to the times of the greatest and the smallest
accelerations?



20 Changes in Velocity
with a Constant Force

You know qualitatively from everyday experience that you must apply a force
to move an object from rest or to change its velocity while it is moving. With
the apparatus shown in Fig. 1 you can investigate the quantitative relation
between the velocity changes and the force.

The cart, loaded with bricks and running on roller-skate wheels, can be
pulled forward with a constant force by hand. To make sure this force is
constant, we apply it through rubber strands which are kept stretched at a



constant length as the cart is pulled along. As it moves, the cart pulls a strip
of paper tape under the striker of an electric timer clamped to the table edge.
From these tapes you can then find the velocity at different points on a run and
can plot a curve of the velocity of the cart as a function of time.

The experiment is best performed on a smooth, level table. If necessary,
level the table with wedges under the legs and check with a spirit level.
Crumbly bricks may be wrapped in aluminum foil or wrapping paper to keep
their grit from getting on the table.

Before making runs to find how the velocity changes with a constant force,
you should be sure that the cart moves with a nearly constant velocity when
you do not pull it. Load the cart with two bricks and make several tapes with
the timer, giving the cart different initial pushes. Look carefully at the tapes.
Is the velocity more nearly uniform when the cart moves slowly or when it
moves rapidly?

Now you can study the effect of a constant pull on the motion of the cart.
Attach one end of a rubber loop to the cart as shown in Fig. 2. Hook the
other end of the rubber loop over the end of a meter stick. While your partner
holds the cart, extend the meter stick forward alongside the cart until the
rubber loop stretches to a given total length-say 80 cm. Your partner
starts the timer and a few seconds later, on signal, releases the cart. You move



forward, pulling the cart while keeping the rubber strands stretched to the 80
cm mark. You will find it worthwhile to make a few practice runs.

Now attach the paper tape to the cart loaded with two bricks and run off a
tape. If you could not keep the rubber stretched to a constant length toward
the end of the run, discard the last part of the tape. From this tape, plot a
graph of the velocity as a function of time (see Experiment 19). It is not
necessary to use all the marks on the tape in calculating the velocity. Instead,
use groups of ten marks for a convenient unit time interval, measuring the
velocity in meters per ten "ticks." Analyze only that portion of the tape which
represents the part of the run where you are reasonably sure the force you
applied was constant.

Run off another tape, using four bricks on the cart and the same rubber
loop. Plot the data from this tape on your original graph. What do you
conclude about the acceleration produced by a constant force?

Is the force exerted the only force acting on the cart?
Was the acceleration greater or smaller when a larger mass was accelerated?



The Dependence of
Acceleration on Force
and Mass

21

The acceleration produced by a constant force was the subject of the preceding
experiment. Now you can investigate quantitatively how different forces
accelerate a given mass and how a given force accelerates different masses.

Acceleration Caused by Different Forces

Using one, two, three, and four rubber loops (Fig. 1, Experiment 20) to
produce the accelerating force, make tape recordings of the motion of the
cart when it is loaded with.four bricks. Find the acceleration from the tapes
and plot a graph of acceleration as a function of the force, that is, the number
of loops.

Since you know from the last experiment that the acceleration is constant
for a constant force, it is not necessary to calculate the acceleration for many
different intervals in the same run. Find the acceleration from the change in
velocity during two equal time intervals. It may be wise to include neither
the start of the tape, where the data cannot be resolved, nor the last part of
the motion, where it is difficult to keep the force constant.

What do you conclude from your graph? What can you say about the
ratio of force to acceleration in this part of the experiment?

Assuming no friction in the apparatus, should the graph pass through the
origin? Where, with respect to the origin, would you expect your graph to
pass?

The Effect of Mass on the Acceleration Produced by a Constant Force

With one rubber loop find the acceleration of the cart when it is loaded with
one, two, three, four, and five bricks. Plot a graph of the ratio of force to
acceleration as a function of the number of bricks. What do you conclude
from your graph?

From your graph, can you express the mass of the cart alone in terms of the
.mass of the bricks?

How could you find the mass of a chunk of lead or a heavy stone, using
the apparatus? Try it.



22 Inertial and
Gravitational Mass

The inertial balance, a simple device for measuring the inertial mass of dif-
ferent objects, is shown in Fig. 1. Put different quantities of matter on the
platform and qualitatively observe the periods of vibration of these masses.
Is the period greater or smaller for larger masses?

Find the quantitative relationship between the quantity of matter on the
balance and the period of vibration by plotting a graph of the period as a
function of the mass. You can do this in the following way:

First, measure the period of the balance alone by measuring the time for
as many vibrations as you can conveniently count. Since the period of the
balance is very short, it is difficult to count the vibrations visually. Hold a



small piece of paper near one of the steel strips and count the audible snaps
made by the paper when the blade just ticks it. It may be easier to count in
groups of three or four vibrations.

Select six nearly identical objects or unit masses such as C clamps. Now
measure the period of the balance loaded with each of the six C clamps
(Fig. 2). How many vibrations should you time and for how many seconds
should you time them to make sure that your error is no greater than about
2 percent?

Now find the periods with one, two, three ... unit masses on the balance
and from these data plot the period as a function of the mass (number of
clamps) on the balance.

Measure the period of an object of unknown mass, of different material
and shape-a stone, for example. Using the clamps as unit masses, find the
inertial mass of the stone. Ordinary weighing will give you the gravitational
mass, in grams, of each of the clamps. To within what percent do they have
the same gravitational mass? Try to predict the gravitational mass of the
stone from your previous measurements. Check it by weighing the stone.

If you had found similar results with other objects, what would you conclude
about gravitational and inertial mass? Are they equal? Proportional? Inde-
pendent? Must the units of inertial mass be the same as those for gravitational
mass? How would the results of this experiment differ if you did the experi-
ment on the moon?

To check whether or not gravity plays a part in the operation of the inertial
balance, load it with the iron slug. This can be done by inserting a wire
through the center hole of the slug and setting the slug into the hole in the



platform. The slug then rests on the platform. Measure the period of the
loaded balance.

Now lift the slug slightly so that its mass no longer rests on the platform and
hold it in this position by a long thread tied to a ringstand (Fig. 1). How do
the periods compare in these two cases? Is gravity relevant here?



Forces on a
Ball in Flight 23·

Figure 1 is a multi-flash photograph of projectile motion. It was made by
throwing a small ball into the air at an angle of 270 with the horizontal. The
time interval between successive exposures was 1/30 sec and the ball moved
from left to right in the picture. The ball's trajectory looks like those described
in Section 12-4 of the text.

Examine the photograph. Is the horizontal velocity of the ball constant?
What can you conclude about the resultant force acting on the ball if the
horizontal velocity is not constant?



If we analyze the photograph in detail and find the changes in velocity
caused by the resultant force, we shall learn more about the forces acting on
the ball than we can from a casual examination of the photograph.

Analyze the velocity changes which occur during successive 0.1 sec time
intervals (three intervals on the photograph) in the following way: Clip
transparent centimeter graph paper or tracing paper on top of the photograph
and mark the center of each image. Draw straight lines connecting every third
point. These lines represent the displacement of the ball during each 0.1 sec
and are therefore a measure of the average velocities duri;ng these equal time
intervals. You can find the velocity changes in each of these intervals by the
construction shown in Fig. 2a, where VI is redrawn as a dashed line.



Is the direction of the velocity change the same in each interval? Are the
magnitudes of the velocity changes the same? What do you conclude about
the direction of the resultant force on the ball?

What change in velocity of the ball in each 0.1 sec was caused by the force
of gravity? In what direction did it act? Express this velocity change aVg in
meters per tenth of a second and subtract it from each of the total velocity
changes a-v on your diagram (Fig. 2b). The velocity change due to gravity
must also be reduced to the scale of the photograph before you subtract it on
your diagram. By using a ruler, you can see that the photograph is one tenth
of its real size.

Do the residual velocity changes Mr all have the same magnitude? In what
direction are they? Describe, qualitatively, the properties of the force that
caused them. What do you think was responsible for the force?

What can you conclude about the mass of the projectile?
Plot on your diagram the path the ball in Fig. 1 would have followed if

gravity had been the only force acting on it.



24 Centripetal Force

Motion in a circle at constant speed is an accelerated motion; although the
magnitude of the velocity stays the same, the direction of the velocity vector
is continuously changing. We know from Newton's law that a force is needed
to maintain this acceleration. How is this force related to the object's speed,
its mass, and the radius of the circle?

To answer these questions we shall use the simple apparatus shown in Fig. 1,
which allows us to measure the force while observing the motion. When the
glass tube is swung in a small circle above your head, the rubber stopper moves
around in a horizontal circle at the end of a string which is threaded through
the tube and fastened to some washers hanging below. The force of gravity
on these washers, acting along the thread, provides the horizontal force needed
to keep the stopper moving in a circle. This horizontal force is called the
centripetal force.

With only one washer on the end of the string to keep the stopper from
getting away, whirl the stopper over your head while holding onto the string
below the tube. Do you have to increase the pull on the string when you
increase the speed of the stopper? What happens if you let go of the string?

Now quantitatively investigate the dependence of the accelerating force on
the speed, the mass, and the radius. First find out how the force depends on
the speed, keeping the mass and the radius constant.

Pull enough string through the tube so that the stopper will whirl in a circle
of about 100 cm radius. Attach an alligator clip to the string just below the
tube to serve as a marker so that you can keep the radius constant while
whirling the stopper. Hang six or more washers on the end of the string.

To find the rate of revolution of the stopper, have a partner measure the
time while you swing the stopper around and count the number of revolutions.
From the time and number of revolutions calculate the period. Repeat the ex-
periment with larger numbers of washers.

Plot the period of the motion as a function of the number of washers. Can
you 'think of a more useful way to plot your data? Try plotting the frequency
instead of the period. Try f 2. What is the dependence of the centripetal force
on the frequency when the revolving mass and the radius are kept constant?

To investigate the dependence of the centripetal force on the revolving mass,
you could whirl two stoppers on the end of the string. What would you expect
to find? On what do you base your prediction?



It is more difficult to investigate experimentally the dependence of the cen-
tripetal force on the radius when the period and mass remain constant. Can
you suggest a way of doing this? What is the dependence of the centripetal
force on the mass, the radius, and the period?

You will notice that as you swung the stopper around, the part of the string
from the tube to the stopper was not quite horizontal. The gravitational force
on the stopper pulled it down. Can you see why this effect of the gravitational
force does not change the relation between the force (measured in number of
washers), the length of the string from the tube to the stopper, and the period
of revolution?

#4 2-hole rubber stopper
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25 Simple Harmonic Motion

An object performs simple harmonic motion if acted upon by a restoring force
whose magnitude is proportional to the displacement. Find out if an object
hung on the end of a particular spring will vibrate in simple harmonic motion,
by making a graph of the extension of the spring as a function of the stretching
force applied to it. (This graph can be used later in Experiment 32 if you use
the same spring in that experiment.)

Predict the period of vibration of, for example, a SOO-gmmass hung from
the spring, and check your prediction. What is the effect of the amplitude of
vibration on the period?

Determine the mass of an object such as a C clamp by measuring its period
of vibration when suspended from the spring. Have you found the inertial
mass or gravitational mass by this measurement? You can check your mea-
surement by weighing the clamp on a balance.

Determine the force constant, the ratio of force to displacement, of a second
spring from the period of the motion of a known mass.

What do you predict for the period of a known mass suspended from the
second spring if the upper end of the second spring is suspended from the
lower end of the first spring?

What assumption have you made in all of your predictions about the mass
of the spring on the period?

If you have time to spare, suspend a I-kg mass from the first spring. How
can you use the laws governing simple harmonic motion to predict its maxi-
mum velocity, if you displace the mass a known distance from its equilibrium
position and release it? (Make sure that the coils of the spring do not close
completely at the highest position of the mass; if they do, use a smaller initial
displacement.) Can you check your prediction with tape and a calibrated
timer?



Momentum Changes
in an Explosion 26

Two carts are pushed apart from rest as the result of a sudden force-an "ex-
plosion"-acting between them. How do the momenta of the carts change?

To apply the sudden force we use a spring which we compress and suddenly
release (Fig. 1). Release the spring with the cart at rest. What do you

Figure 1
To load the exploder, push the tube into the cart and lodge it behind the metal plate. To
release, tap the pin at the front.



observe? Try this with different loads on the cart. What do you conclude
about the horizontal component of the momentum of the cart before and
after the explosion?

Place a second cart next to the first one so that the spring will push against
the second cart when released. What happens now as you release the spring?
Do this experiment with various loads on the carts. Qualitatively, what would
you say about the velocities of the two carts as you load them with different
masses? How do you think the momenta of the two carts compare after the
"explosion"?

To make this experiment quantitative we need to measure the velocities and
the masses of the two carts. But we do not have to know their velocities in
meters per second; any unit will do. It is possible to find their velocities in
terms of the distances both carts move during the same time interval. Suppose
we release the carts just halfway between two wooden bumpers and they go
at the same speed. We shall hear just one sound as they hit the bumpers at the
same time. If one goes faster than the other, it will hit earlier and we will hear
two distinct sounds instead of one. We can, however, move the starting point
so the faster cart has to travel a longer distance before hitting the bumper.
After several trials we can find a position from which both carts will take the
same time to travel to the bumpers. The distances traveled by the carts from
rest positions are shown as Xl and X2 in Fig. 2. The carts travel these distances
in the same time interval t and, if they move at constant velocity, we can write
for their velocities:

_Xl. _X2
Vl--,V2 --

t t

The velocities, therefore, are proportional to the distances moved in the same
time interval.

Using this method of moving the starting point to give equal times, deter-
mine the ratio of the momenta of your carts after explosion. What is the
change in momentum of each cart as a result of the explosion? Try this with
different combinations of masses on the cart. Can you draw any conclusions
concerning the total momentum of the system after the explosion compared
with the total momentum before the explosion?



~,eltable



27 The Cart and
the Brick

What happens when a suspended brick is dropped on a moving cart as the cart
passes beneath the brick? Suspend a brick so that the cart can just pass beneath
without touching it (Fig. 1). The hanging brick should be horizontal and
motionless. Move the cart back, give it a push, and release the brick as the
cart passes beneath it. What happens? Try the experiment again with the
cart loaded with different numbers of bricks. What is the effect of increasing
the mass of the cart by loading it with bricks?

To make accurate measurements, record the motion for both loaded and
unloaded carts. Since you wish to have the motion as uniform as possible
before and after the brick collides with the cart, start the cart with a reasonably
high speed.

From the tapes and the masses of the cart and the brick, compute the
change in momentum of the cart and the change in horizontal momentum of
the brick. You can compute the momenta in units of kilogram-meters per
"tick." How do they compare? What is the total horizontal momentum of
cart and brick before and after they interact? Is momentum conserved?

What is the horizontal impulse applied to the falling brick? Try to estimate
the length of time of the interaction by examining your tapes. Can you make
a rough estimate of the horizontal force applied to the falling brick? How
does this compare with the force the brick applied to the cart?

What happened to the vertical momentum of the brick? Would it make
any difference if the brick were dropped from different heights as long as you
didn't break the cart or the table?

What would happen if, instead of dropping the brick on the cart, you sus-
pended a funnel full of sand above the table and let the sand run into a box
on the cart as it passed beneath the funnel? What would happen to the
velocity of the cart if, instead of letting the sand run into the cart, you let the
sand run out of it?





28 A Collision in
Two Dimensions

Previously we investigated the momenta of colliding bodies moving along a
single straight line. What happens when two bodies go off in different direc-
tions after colliding? To find out, we shall roll one steel ball down an incline
so that it makes a glancing collision with another steel ball of the same size,
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knocking it off a support near the edge of the table (Fig. 1). We shall then
find the momentum of each from their masses and velocities.

To find the velocities of the spheres, we shall use what we have learned
about projectile motion (see text, Section 12-3). As long as air resistance
can be neglected, objects projected with different horizontal velocities from
the edge of a table take the same time to fall to the floor. The horizontal
component of their velocity remains unchanged and therefore the distance
they go horizontally is proportional to their horizontal velocity. We can use
this fact to measure the velocities of the spheres after they have collided. All
we have to do is to compare the horizontal displacements of the balls.

To give an initial velocity to one of the spheres, roll it down the grooved
ruler (Fig. 2). The target sphere rests in the slight depression on the top
of the set screw. Adjust the height of the set screw so that it will support a
steel ball at the same height as an identical steel ball placed at the bottom of
the incline.

Tape four sheets of onionskin or tracing paper together to make a single
large sheet. Be sure the sheets do not overlap. Do the same with four sheets
of carbon paper. Adjust the carbon paper, carbon side up, on the floor with
the tracing paper on top of it; the plumb bob should hang directly over the
middle of the shorter side (Fig. 1). Mark this point on the paper and put
weights on the paper to hold it in place. Release a steel ball 25 cm from the
lower end of the ruler ten or fifteen times and circle the distribution of points
on the paper. To what degree is the initial velocity always the same?



With a steel ball balanced on the set screw, try several collisions, releasing
the incident ball from the same point as before on the ruler. To change the
point of collision, turn the arm supporting the target ball through a small angle.
A numbered circle around each impact on the paper will help you identify
the different marks on the paper.

Draw on the paper the vectors that represent the velocities of the balls after
collision. The position of the target sphere at the instant of impact can be
determined with the help of Fig. 3.

position of
incident sphere
at instant of
collision

to ramp ~

Since the masses of the balls are equal, the velocity vectors represent the
momenta of the balls. Add the two momentum vectors graphically on your
paper, placing the tail of the momentum vector of the target ball at the head
of the momentum vector of the incident ball.

How does the vector sum of the two final momenta compare with the initial
momentum of the incident ball? Is momentum conserved in these interac-
tions? How does the arithmetic sum of the two magnitudes of the momenta
after collision compare with the magnitude of the initial momentum of the
incident ball?

Repeat the experiment using two spheres of unequal mass but of the same
size. Which one should you use as the incident sphere? How does the vector
sum of the final velocities compare with the initial velocity? How can you
convert the velocity vectors to momentum vectors now that the masses of the
two spheres are not equal? How does the vector sum of the final momenta
compare with the initial momentum?

Compare the vector components of the final momenta of the two balls in a
direction at right angles to the initial momentum. What do you find?



Elastic Collisions 29

When you studied collisions in two dimensions (Experiment 28), you were
concerned only with comparing momenta before and after the collision. The
records of these collisions, however, can serve also for the comparison of the
kinetic energy of the balls before and after the collision.

Consider first the two steel balls of equal mass. Their kinetic energy before
the collision is ~ mV12; after the collision it is ~ mv? + ~mV22. If kinetic
energy is conserved in the collision, i.e., if the collision is elastic, then

What does this equation say about the angle between the velocity vectors V'l

and V'2? Measure these angles for the runs you made in the preceding experi-
ment. What do you conclude about the elasticity of the collisions?

When the colliding balls have different masses, the elasticity of the collision
can no longer be determined by inspection or just the measurement of an
angle. To reduce the amount of calculation needed to check if the relation
~ mlv12 = ~ mlv? + ~m2v? holds, you can first divide both sides by ~ ml.

From your data on the collisions of the steel ball and the glass ball, what do
you conclude about the elasticity of the collisions?



30 Simulated Nuclear
Collisions

Nuclear collisions are often studied in photographic emulsions and in bubble
chambers. In these instruments, charged particles moving at high speed ionize
atoms along their paths and leave visible tracks. The energy to ionize the
atoms comes from the kinetic energy of the charged particles, which therefore
slow down. The distance a particle travels in the chamber before it comes to
rest is called its range. The range depends on the particle's kinetic energy as
it enters the chamber. By shooting particles of known energy into the chamber,
we can establish the relation between range and energy. We can then use this
relation to find the energies of particles by observing their ranges. In this way
we can find the energies of particles emerging from a nucleus as the result of
a collision. If the masses of the particles are known, we can find their
momenta.

There is strong evidence that momentum is conserved in nuclear collisions.
When we observe a collision in which momentum appears not to be conserved,
we conclude that at least one uncharged particle, which left no track, carried
the missing momentum.

In this experiment you will study a situation analogous to a nuclear collision;
the particles will be nickels and the emulsion or bubble chamber will be a
sheet of paper which the nickels slide across until brought to rest by friction.
The distance a nickel slides across the paper (its range) depends on its kinetic
energy. To find the range-energy relation for a nickel, we can launch it down
an incline, giving it different energies by starting it from different heights
(Fig. 1). We then measure how far the nickel slides before coming to rest
for each energy we give it. From the mass and the range-energy relation, we
can find the velocity and momentum of the nickel when it comes out of a
collision.

Before simulating a nuclear collision, we must find the range-energy rela-
tion for nickels. Select three nickels that slide easily down the ramp and have
nearly the same range when sliding with the same face down. Find the dis-
tances these nickels slide on the paper for different release heights. Make
several runs at each height and record the average range for each height. How
is the kinetic energy at the bottom of the incline related to the release height?
(Friction on the steep incline may be ignored.) A graph of the kinetic energy
as a function of the range is the range-energy relation.
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You are now ready to simulate a nuclear collision by placing a nickel (the
nucleus to be hit) on the paper and sliding another nickel down the incline,
giving it a known kinetic energy. (The incline corresponds to an accelerator
giving an atomic particle a known kinetic energy.) The target nickel should
be about 10 cm from the bottom of the incline to keep the incident nickel from
bouncing over it.

The next part of the experiment should be done by one partner while the
others are not present. Slide a nickel down the incline at the target nickel.
Record the release height on the incline, the final position of the incident
nickel, and the initial position of the target nickel. Secretly record the final
position of the target nickel by coordinate measurements along two edges of
the paper. The other laboratory partners now find the momentum and final
position (i.e., the kinetic energy) of the target, which corresponds to an un-
charged atomic particle leaving no visible track. To find the position of the
incident nickel at the instant of collision, see Fig. 2.

What fundamental law have you assumed in finding the unknown momen-
tum? What fraction of the kinetic energy of the incident nickel is lost in this
collision?

Repeat the experiment using two nickels placed next to each other as the
target. Find the "unknown" momentum and final position of one of the target
nickels.



Inelastic Collisions 31

We have seen in Section 15-6 that a collision between two bodies will be
elastic if the force between them depends only on their separation. If during
the collision one of the bodies is permanently deformed (even slightly!), then
the force is most likely larger when the two bodies hit each other than when
they recede from each other. We can arrange such a situation by putting a
piece of adhesive tape on the target steel ball in Fig. 1, Experiment 28.

Before making any runs, what do you predict (qualitatively) about (1) the
total kinetic energy after the collision, (2) the total momentum after the col-
lision, and (3) the angles between the momenta of the balls after the collision,
and (3) the angles between the momenta of the balls after the collision as
compared with the angles in Experiment 29?

Check your predictions by experiment, following the same guidelines as in
Experiment 28.

How will putting some tape on the target glass ball affect the outcome of
collisions? Try it and compare the results with those of Experiments 28
and 29.



32 Changes in
Potential Energy

Hang a spring from a ringstand and attach a mass of about one kilogram to
it. Lift the mass a few centimeters above its rest position and let it fall. At the
top and bottom of its motion it is at rest. When the mass is at the bottom of its
motion, its energy is stored in the spring. At the top of its motion its energy is
stored in the gravitational field. Compare the change in gravitational energy
with the change in potential energy stored in the spring.

You can find the change in potential energy of the spring when it is stretched
a distance Ax from Xl to X2 by calculating the work done in stretching it from
Xl to X2 (Fig. 1). The change in gravitational potential energy when the mass
falls this same distance Ax can be found by calculating the work done in lifting
the mass through the distance Ax. You can then compare the gravitational
energy lost as the mass falls from rest to its lowest point with the spring energy
gained as the spring stretches.



To find the potential energy of the spring, we first find how the extension x
of the spring is related to the force that stretches it. (If you are using the same
spring as in Experiment 25, you may use the information you obtained then.)
Hang known masses up to a maximum of about 1.5 kg on the end of the spring
and find the extension x in meters as a function of the force F in newtons. Plot
a graph of x as a function of F. Is F proportional to x for this spring in the
range of your measurements?

If your graph is a straight line, find the spring constant k = !... from the
x

slope and write down the potential energy function of the spring; that is, the
equation for the energy stored in the spring as a function of the extension of
the spring. How can you find the potential energy stored in the spring for a
given extension if your graph is not a straight line?

Now hang a one-kilogram mass on the spring and support it with your hand
so the spring extends about 20 cm more than its natural length when hanging
without the mass. Use clothespins clamped to the ringstand to mark the lower
end of the unloaded spring and the point from which you drop the mass. Re-
lease the mass and note how far it falls. Place a clothespin on the stand to
mark the lowest point of the fall. Release the mass several times until you
hav~ accurately located the lowest point of the vibration.

Calculate the loss in gravitational potential energy and the gain in potential
energy of the spring when the mass falls. How do they compare? Repeat the
above experiment, releasing the mass from a point about 25 cm from the lower
end of the unloaded spring. Repeat the experiment with a 0.5 kg mass and
calculate the change in gravitational potential energy and spring potential
energy when the mass falls from a point about 10 cm below the end of the un-
loaded spring.

Is energy conserved in these interactions between the masses and the spring?
Are they elastic interactions?

What is the sum of the two potential energies when the kilogram mass has
reached the halfway mark in its fall? How does this compare with the initial
energy of the mass? How do you explain this? How could you check your
explanation?

If you have time, plot a graph of the sum of the two potential energies as a
function of the spring extension. What can you learn from this graph?



33 Completely Inelastic
Collisions

In some collisions like those you investigated in Experiment 31, Inelastic
Collisions, momentum is conserved but the total kinetic energy after the
collision is less than before the collision. What fraction of their total kinetic
energy can two balls lose and still conserve momentum?

To find out, you can use the apparatus you used in Experiment 30. How-
ever, instead of a steel target ball you will use a large plastic ball that has a
tapered hole drilled in it. The incident ball rolls into this hole when it leaves
the incline and becomes wedged in the plastic ball. There are two small pieces
of sponge rubber glued just inside the hole, (Fig. 1). These must be lined up
vertically, as shown in the figure, or the incident ball will not stick in the hole.

sponge
rubber

Adjust the position of the screw on which the target ball rests so that when
the target ball is in position its center is level with the center of the incident steel
ball as it leaves the incline (Fig. 2).

Before proceeding with the experiment, weigh the incident and target balls
and predict, on the basis of the conservation of momentum, what fraction of the
kinetic energy is lost in the collision. What happens to it? Check your pre-
diction.

Make a sketch showing qualitatively the velocity in the center-of-mass frame
of reference of the steel ball and the plastic ball just before and just after the
collision. Could there be a larger loss of kinetic energy than in a collision
where the balls stick together?



Assuming that it takes 0.4 joule to raise the temperature of 1.0 gram of
steel by l.Ooe, and 1.6 joules to raise 1.0 gram of plastic by 1.0oe, estimate
the rise in temperature of the two balls as a result of the collision. You can
estimate the velocity after the collision from the vertical distance the balls fall
and the horizontal distance they move after the collision.



34 Electrified Objects

Much of the qualitative behavior of electric charges was discovered during
the eighteenth century. Common materials like glass were rubbed with dif-
ferent kinds of cloth to produce electric charges. You can discover for yourself
the behavior of electric charges by rubbing easily charged plastic strips with
paper or cloth.

Hang a strip of cellulose acetate and a strip of vinylite by short lengths of
masking tape from a crossbar of a ringstand so they can swing freely without
twisting. Briskly rub the vinylite strip and the acetate strip with a dry piece of
paper. Do not touch the rubbed surfaces. Rub another vinylite strip with
paper and bring it near ea~llof the suspended strips. What do you conclude
from the results?

Now rub another strip of acetate with paper and bring it near the hanging
strips. What do you infer?

Have you found one, two, or three kinds of charge? Assign names to each
kind of charge you have found and use these names throughout the rest of the
experiment.

Rub a comb, plastic ruler, or other substance that charges easily on your
clothes and observe its effect on the two suspended pieces of plastic. Which
kind of charge does the substance have?

What general conclusions about the electrification of bodies can you make
as a result of your observations in this experiment?

What would be the result of changing the names you have given to the
charges you observed?

What happens when you hold a charged strip close to a tiny piece of un-
charged paper or thread?



Electrostatic Induction 35

You know from everyday experience that electric charges do not flow easily
in materials such as glass, ceramics, and plastics. These are called insulators.
Other materials, mostly metals, in which electric charges move easily, are
called conductors. In this experiment you will investigate the consequences of
the free motion of charges in a conductor.

Place two metal rods end to end on glass beakers so they touch, and bring a
charged piece of plastic close to one end of the rods (Fig. 1). (Do not get the



plastic so close that a spark jumps between the plastic and rod.) With the
charged plastic close to the rods, separate the rods by moving one of the
beakers without touching the rods. Remove the plastic and transfer some of its
charge to a small piece of foil hanging by a thread from the crossbar of a ring-
stand. Move one rod and then the other close to the foil. How do you explain
the results?

Now bring the rods into contact again and then bring them near the charged
foil. .How does the charged foil behave when it is near the rods?

Bring the charged plastic again close to one end of a single rod and touch
the other end of the rod briefly with your finger. Remove the plastic and test
for the presence of charge on the rod, using the charged foil. Is the charge
on the rod the same as or opposite to the charge on the plastic?

The metal foil you have been using gives an indication of the presence and
sign of a charge but is not good for measuring the quantity of charge. An elec-
troscope is a better instrument than a piece of foil for measuring charge. Re-
peat the last part of the experiment, using an electroscope in place of both the
rods and the foil.



The Force Between
Two Charged Spheres 36

The force between electrically charged bodies depends on their separation
and on the magnitude of their charges. The nature of the dependence can be
measured in several ways. One simple method, which will be used in this
experiment, measures the force on a charged body by balancing it against a
known force-the force of gravity. We can suspend a small charged sphere
with an insulating thread and bring another charged sphere close to it. From
the deflection of the suspended sphere from the vertical, we can measure the
electric force on it in terms of its weight.

A light, conducting ball A at the bottom of a "V" of very fine nylon thread
is shown in Fig. 1. The ball can swing in only one vertical plane. Read the
position on the scale of one edge of the hanging ball. The reading should be
taken when the mirror image of the sphere is hidden behind the real sphere.
This ensures that your line of sight is perpendicular to the scale when you take
a reading (Fig. 2). You can charge the ball by conduction with a charged
penny (Fig. 3), and bring near it a like-charged ball B on an insulated support.

Take readings of the positions of the balls as B is moved closer to A. Be sure
to use the same side of each ball every time you read its position. Some charge
may leak away slowly across the surface of the thread and the insulating sup-
port, thereby introducing an error. How can you test for leakage? When
should you test for it, during the run or at the end?

When the suspended ball is at rest, the net force acting on it is zero. That
is, the vector sum of the tension in the thread f and the weight of the ball mg
is equal and opposite to the electric force F. From Fig. 4 it can be seen that, for
small angles, the ratio of the magnitude of the electric force to the magnitude

of the weight ..!.-.. is equal to d, the ratio of the horizontal displacement of
mg L

the suspended ball to the length of the suspension. Hence

F = mg d = (constant) . d.
L

Since we are not concerned here with particular units of force, we can mea-
sure the force in terms of d. We can, therefore, study the dependence of F on r
by plotting d as a function of r.

Plot a graph of the force as a function of the separation of the two balls.



How is the force at a separation r related to the force at a separation of l;2 r?
2;3 r? What kind of dependence does this suggest? Plot a graph to check it. If
your graph deviates from your prediction, how can you account for the devia-
tion?

Figure 2
The scale and mirror of the
apparatus shown in Fig. 1. The
point of view is perpendicular
to the scale at the position of
ball A, whose image is hidden.
To find the position of ball B on
the scale, it is necessary to
move your head slightly to the
left until the image of ball B is
hidden by the ball itself.
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Figure 3
A penny with an insulating handle can be used to charge
the spheres. Rub an acetate or vinyl strip with silk and
place the strip on the table. Put the penny flat on the strip,
handle up, and momentarily touch the top of the penny
with your finger. When the penny is picked up by the
insulating handle, it will be charged. The charge can then
be transferred to the conducting balls by contact.



37 Driving Force and
Terminal Velocity

To answer the question "Is there a smallest unit of electric charge?" we
must be able to work with and measure extremely small charges. We detect
electric charges through the electric forces exerted on charged bodies. To
detect very small charges, therefore, we must be able to handle very small
forces. The weight and other forces acting on bodies of ordinary size are so
large that electric forces are insignificant unless the charge is great; therefore,
very small objects are essential. Useful objects for this purpose are the small
plastic spheres made for calibrating electron microscopes. Figure 1 shows a
few of them. The spheres are rarely neutral; most of them carry a small
electric charge. We shall attempt to measure the charge by measuring the
electric forces acting on them.

Figure 1
An electron-microscope photo-
graph of a few latex spheres of
diameter 1.8 microns. Those used
in the experiment are a little
smaller.

The apparatus is shown in Fig. 2. The only critical adjustment involves
positioning the light source so that the image of the bulb filament is formed
right at the center of the plates. To adjust the light source, you can hold a
piece of paper vertically over the center of the plates, tilt the light source so
that it shines on the paper, and slide the light-source tube back and forth until
a clear image is formed on the paper. The filament of the light source should
be vertical.

Plug the wires from the plates into the connectors next to the switch.
CAUTION: The voltage is dangerously high; do not turn on the power supply
until you have finished making the connections.

The switch controls the charge on the plates. In the center position there is
no charge; with the switch up, one plate is positive, the other negative; and
with the switch down, the polarities are reversed.
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Figure 2
The small plastic bottle contains a suspension of the spheres in water. When you squeeze the
bottle, a fine spray of water with many spheres is blown into the region between the plates.
The water rapidly evaporates, leaving a cloud of spheres visible through the microscope as
bright points.

With the light turned on, squeeze the bulb to bring in a cloud of spheres,
leaving the switch centered. What do the spheres do? (Note that everything
appears inverted when you look through the microscope.) Are they all mov-
ing in the same direction? Are they accelerating as they move across the field?
Select a sphere and measure its speed in two parts of the field of view. What
forces are acting on it?

How does charging the plates affect the motion of the spheres? What hap-
pens when you reverse the direction of the electric field? Measure again the
velocity of a sphere in two parts of the field of view to see whether it is acceler-
ating when an electric force is being applied. An explanation for the observed
motion is that the air resistance on these tiny spheres increases rapidly and they
very soon move at a constant terminal velocity with the force of air resistance
equal and opposite to the driving force (which may be gravity alone or gravity
plus an electric force). In this experiment we wish to find the relation between
the terminal velocity and the force driving the sphere.

You will need three measurements on each of about a dozen spheres. A set
for one sphere consists of: a velocity in free-fall under gravity alone with no



charge on plates; a velocity V+ where the electrical force is in the same direc-
tion as the gravitational force and the magnitudes of the forces add (Fg + Fe);
and a velocity V- where the electrical force is opposite to the gravitational
force (F g - Fe). The diagram of Fig. 3 shows the forces involved.

For each sphere you will therefore have three velocities: one for which the
driving force is gravity alone; one, V+, with an electric force added; and one,
V-, with the same electric force subtracted.

Measure the velocities by timing the motion over, say, ten spaces.
Plot the data for anyone sphere on a graph like that in Fig. 4. How does

the velocity V+, observed when the driving force is Fg + Fe, compare with the
velocity when gravity alone is the driving force? How does the velocity V-,
observed when the driving force is Fg - Fe for the same sphere, compare with
the velocity when gravity alone is the driving force? What is the shape of the
graph of velocity as a function of driving force for one sphere? What is the
shape of the graph of velocity versus force for your other spheres? What can
you conclude about the relation between velocity and driving force?

Why, when the electric force is zero, do some spheres differ from others in
velocity?

v+ Fe

Free Fall (Fg+Fel

-- -r- -~

Fg Fg Fg



Velocity
(space/second)
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Fg + Fe

Force
(in arbitrary units)



38 The Millikan Experiment

In the previous experiment we established that the terminal velocity of the
small plastic spheres is directly proportional to the driving force acting on
them. We shall now use this result to investigate whether the different charges
appearing on different spheres are multiples of a unit charge. If we are careful,
we can choose spheres of the same mass and thus ensure that the force of
gravity is the same on each. Furthermore, since we keep the charge on the
plates constant, the electric forces will be proportional to the charges on the
spheres, and the differences in observed velocity will be proportional to differ-
ences in charge on the spheres.

It is important to look for a sphere each time which has a small charge,
since, if there is a unit charge, the relative difference in charge will be greatest
for small charges. You can make the selection in the following way:

Set up the apparatus as in the previous experiment. CAUTION: Do not
forget that the voltage on the plates is dangerous. Squeeze the bulb to bring in
a batch of spheres; then throw the switch to charge the plates and sweep out
the fast-moving spheres that have large charges. Reverse the field several times
so as not to lose the slow-moving spheres.

Place the switch in the neutral position and keep it there until most of the
fast-moving, clumped spheres have dropped out of the field of view. If you
still have a large number of spheres in view, repeat the two steps described
above.

To insure that the sphere you have chosen is a single sphere, time its fall
using only the gravitational force (with the electric field off). If the falling
time is comparable to the falling time you found for a single sphere in the
previous experiment, you may use it. If not, reject it and find another sphere.

With the switch you can get two combinations of forces: either Fg + Fe
(electric force in the same direction as gravity) or F g - Fe (electric force in
the direction opposite to gravity). For each sphere you have a velocity V+
proportional to Fg + Fe and a second velocity V- proportional to Fg - Fe.
If you subtract V- from V+, to what force is the resultant velocity propor-
tional? Could you use these differences of velocity as a good measure of the
charge?

Measure V+ and V- for the sphere you have chosen. Repeat the experi-
ment and measure V+ and V- for at least 12 other spheres, trying to find
spheres which fall at different rates with the field on.



There are various ways in which you could analyze these data to look for
evidence of the discreteness of electric charge. One simple way is to plot
v+ - V-, equally spaced along the horizontal axis, in increasing order on a
bar graph. (Recall that V+ and V- are vector quantities.) What evidence do
you see for the existence of a natural unit of charge? What is the smallest
number of charges you measured?



39 The Charge on a
Capacitor

A capacitor is made by placing two metal plates side by side with a thin
insulating spacer between them. If the capacitor is connected to a battery,
charge will move onto the plates. In this experiment you will measure the
amount of charge transferred by a battery to the plates and also find the rela-
tionship between the charge that accumulates on the plates and the potential
difference applied to the capacitor.

Each of the two capacitors used in the experiment consists of two metal
foils, separated by a paper insulator, that are rolled up into a cylinder. Try
charging the capacitor with a battery, disconnecting the battery, and then dis-
charging the capacitor through a milliammeter. How do you account for what
happens?

Connect all the apparatus, except the milliammeter, as shown in Fig. 1.
With the dry cell disconnected from the motor and one charging dry cell con-
nected, turn the motor slowly with your hand. What happens to the capacitor
during a full rotation of the shaft of the motor?

motor
battery

II

charging
battery



Now connect the motor to two cells in series and measure the frequency of
the motor with a stroboscope. What is the current through the milliammeter
with the motor turning steadily and one charging battery connected? Why
does the meter now show a steady current? How many times per second was
the capacitor charged and discharged? How many coulombs of charge were
placed on the capacitor during each charging?

Repeat the experiment using two and then three charging dry cells in series.
Does the capacitor collect its maximum charge during the short time inter-

val it is connected to the charging battery? You can investigate this by repeat-
ing the experiment with the motor connected to one cell only, thereby
increasing the charging time. How much charge is now placed on the capaci-
tor during each charge using one, two, and three charging batteries? Is it
reasonable to assume that the capacitor collects its maximum charge during
each charging?

What is the ratio of the charge on the capacitor to the potential difference?
(This ratio qjV is called the capacity, and a capacity of one coulomb per volt
is called a farad. )

It seems reasonable to assume that the capacitor will charge more slowly if
a resistor is connected in series in the charging circuit. You can investigate this
by charging and discharging the larger capacitor with the motor and with re-
sistors of different sizes (100 ohm, 200 ohm, 103 ohm, and 104 ohm) con-
nected in series in the charging circuit. In each case run the motor with one
battery and then two, and compare the results. What do you conclude?

Connect two capacitors in parallel and measure the capacity. How does
this compare with their separate capacities? Try two in series.



40 Energy Transferred by an
Electric Motor

An electric motor is a device which converts electric energy into mechanical
energy. If the EMF of a battery supplying energy to a motor is 8 and a charge
q flows through the battery, the energy supplied by the battery is q 8. If the
motor is used to lift a mass m a height h, the increase in the potential energy, or
the useful work done by the motor, is mgh. Is the work done by the motor
equal to the energy supplied by the battery?

The apparatus for this experiment is shown in Fig. 1. Be sure to mount the
motor high enough so that the load of washers can be lifted about 2 meters. If
the end of the dowel where the thread is tied is made slightly lower than the
other end, the thread will wind up neatly. The details of the electric circuit are
shown in Fig. 2.

With six washers on the end of the thread, you can vary the resistance until
the washers are pulled up at about 0.5 m/sec. (The motor may not run
steadily at lower speeds.)

What is the EMF of the battery? What is the current in the circuit while the
washers are rising? How long does it take to lift them 1.5 m? How much



energy is supplied by the battery to lift the washers 1.5 m? How much does
the potential energy of the washers change? How does the energy supplied by
the battery compare with the change in the energy of the washers?

Repeat the experiment at several higher speeds. How does the current
change?

Draw a graph of the current as a function of speed and a graph of the ratio
of energy from the motor to energy from the battery (the efficiency of the
system) as a functipnof speed.

~ _.~- . Now repeat the experiment again, starting with six washers and a speed of
about 0.4 m/sec, but this time keep the resistance fixed and remove the washers
one by one until two washers are left.

Draw a graph of the efficiency of the system as a function of the number of
washers. What do you conclude about the condition for highest efficiency?

Consider the system made up of the battery, resistance wire, and motor.
Where is the energy going that is not converted into potential energy? (Ne-
glect the internal details of the motor. )



41 The Magnetic Field
of a Current

Place a magnetic compass over a long piece of wire and momentarily touch
the two ends of the wire to the terminals of a dry cell. The compass needle
moves. Apparently the current in the wire creates a magnetic field which de-
flects the compass. How can we find the dependence of the direction and mag-
nitude of a magnetic field on the current that produces it? A compass will
indicate the direction, since it aligns itself in the field, and the magnitude of
the field can be measured by comparing it with the constant field of the earth.

First investigate the direction of the magnetic field in the center of a coil of
wire in the following way: Wind the wire into a coil of several turns on a frame
as shown in Fig. 1. Place the compass in the center of the coil and note the



direction of the needle when there is no electric current in the coil. Now con-
nect-the coil through a flashlight bulb to a dry cell as shown in Fig. 2 and note
the direction of the needle. The bulb keeps the current small.

Connect the coil directly to the terminals of the dry cell and observe the
direction of the needle. (Do not leave the cell connected longer than neces-
sary, because the large current flowing through the wire runs the cells down
rapidly.) Turn the coil through a horizontal angle of about 30° and again
note the direction of the field when a large current flows through the coil. What
do you conclude about the direction of the field in the center of the coil due to
the current?

Reverse the direction of the current and repeat the experiment. How does
reversing the current affect the direction of the field?

With only one turn of the long wire on the frame, align the frame with
respect to the earth's magnetic field so that the compass needle, placed at the
center of the coil, lies in the plane of the coil. Again connect the ends of the
wire to the dry cell through the flashlight bulb. The magnetic field produced
by the current will be of about the same order of magnitude at the center of the
coil as the horizontal component of the earth's field. Be sure that the wires
from the coil to the cell are kept away from the loop so that the magnetic field
from the current flowing in them will not contribute measurably to the field at
the center of the coil. Measure the angular deflection of the compass needle.
Reverse the direction of the current and again read the needle deflection.

Draw a vector diagram to find the strength of the magnetic field in terms of
the earth's field.

Double the current flowing around the loop by adding another turn of wire
to the coil and measure the compass deflection for both directions of current
flow. Keep increasing the current in steps by adding turns of wire. When
you have finished taking data, determine the field strength for each case by
means of vector diagrams or trigonometry. What do you conclude about the
magnitude of the magnetic field as a function of the current?

What will happen if you wind the coil with some turns going in one direction
and others going in the opposite direction? What do you predict will be the
magnitude of the resulting field? Measure the field to check your prediction.



Could you have measured the field resulting from the current if, initially, the
needle was not parallel to the plane of the coil? Will the strength of the mag-
netic field of the compass needle influence the results of this experiment?

An alternate method of varying the current flowing around the loop is to
vary the resistance of the circuit by means of a variable resistor connected with
the coil. The circuit connections are shown in Fig. 3. If you have time, use
this method. Are the field strengths measured for different ammeter readings
consistent with the conclusions you have reached in the earlier part of the ex-
periment about the field strength as a function of current?



The Measurement of a
Magnetic Field in
Fundamental Units

42

In previous experiments we measured magnetic field strength in terms of the
horizontal component of the earth's magnetic field. In this experiment we shall
measure magnetic fields in more fundamental units, using the fact that a
magnetic field exerts a force on a current-carrying wire. If we measure the
force F in newtons, the current I in amperes, and the length of the wire L in

h h f h fi Id B . newtons . . bmeters, t e strengt 0 tee III----- ISgIven y
ampere-meter

B=!-
IL

provided the wire is perpendicular to the direction of the field.
Figure 1 shows a sensitive balance that we can use to measure the force on

a short length of current-carrying wire in a magnetic field. If the balance is so
aligned that the end of the V-shaped metal loop (A in Fig. 1) is perpendicular



to the field while the sides are parallel to it, only the end will be subject to a
force from the field. We can measure the force on the end of the loop by bal-
ancing it with a known weight hung from the other end of the balance.

In this experiment we shall determine the magnitude of the magnetic field in
the center of a long coil (a solenoid) of current-carrying wire. Connect the
loop, coil, variable resistors, and ammeters to a source of current as shown in
Fig. 2. Be sure both the pointed tips of the loop and the tops of the supports
are clean and shiny so that good electrical contact will be made.

A +

current
supply

With no current flowing in the apparatus, balance the loop in the coil (Fig.
3). Level the loop by adjusting the position of the nut. Now, with a current
of about 4 amperes, establish a magnetic field in the center of the coil. You
can then measure this field by passing a current of about 1 ampere through the
loop and finding the force needed to balance it. Roughly balance the loop with
a short piece of string and then level it exactly by adjusting the current through
it. (If the current in the loop fluctuates wildly when the balance is swinging,
the contacts are corroded or rough. )

Find the weight of string needed for balance with other values of current in
the loop. (The current in the loop should not exceed 5 amperes or the con-
tacts will corrode.) What is the strength of the field in the center of the coil

III newtons ? What is the field strength in newton-seconds per elemen-
ampere-meter

tary charge per meter? (l ampere = 6.25 X 1018 elementary charges/sec-
ond.)



Measure the field in the coil resulting from several other values of current in
the coil. (Five amperes is the maximum current the coil can carry without
overheating. )

Do your measurements show that the field inside the coil is proportional to
the current flowing through it? Draw a graph of the field strength as a function
of the current in the coil. If all the coils used by your class are the same, pool
all the class data in a histogram and from that determine the best value for the
slope of the graph.

Could you use this apparatus to measure the field near a small permanent
magnet? Can you use it to measure the field of the earth directly?

Why don't you use iron for the loop of the balance?



43 The Mass of the Electron

An electron, initially at rest, accelerates in an electric field and acquires
kinetic energy equal to the product of its charge and the potential difference

2

through which it moves; mv = qV. If the electron with velocity v then moves
2

through a uniform magnetic field perpendicular to its direction of motion, the
field exerts a centripetal force perpendicular to the electron's motion and the
direction of the field. This force depends on the magnetic field strength B, the
charge of the electron, and its speed; F = Bqv. The electron will follow a cir-
cular path of radius R given by

mv2
F=-.

R
Equating the two expressions for the magnetic force, F = Bqv

mv2
•

R,glves
BqR

v=--
m

B2q2R2
v2=---

m2

2

Substituting this expression for v2 in the equation mv = qV gives
2

B2qR2

m=-2V-'

Instead of using a tube like that described in the text for accelerating and de-
flecting electrons, we shall use a common commercial vacuum tube used in
tuning a radio. Fig. 1 shows the construction of this tube. The electrons
emitted by the cathode are accelerated by the potential difference between the
cathode and the anode. They move radially outward in a fanlike beam, reach-
ing nearly their maximum velocity by the time they emerge from beneath the
black metal cap covering the center of the tube. Their speed is approximately
constant over the remainder of their path to the anode.

The anode is coated with a fluorescent material which emits light when elec-
trons strike it. Since it is conical in shape, we can see the path the electrons
follow as they move outward from the cathode; when we look straight down
from above, the conical anode slices the electron beam diagonally, showing the
position of the electrons at different distances from the cathode. Two deflecting



Figure 1 (8)
An electron tube or tuning eye
with glass envelope removed.

Figure 1 (b)
The metal center cap shown in
(a) has been cut away from its
wire supports and removed, re-
vealing the important parts of
the tube structure. K is the
electron-emitting cathode. 0
and 0' are the deflecting elec-
trodes that form the shadow,
and A is the anode coated with
a fluorescent material.

electrodes are connected to the cathode and, with no magnetic field present,
they repel electrons moving toward them from the cathode and form a wedge-
shaped shadow behind them (Fig. 2).

When the tube is in a uniform magnetic field parallel to the cathode, the
electrons are deflected in an almost circular path as shown by the curvature of
the edge of the shadow (Fig. 3).

You will put a uniform magnetic field on the tube by inserting the tube into
the center of a long coil. Connect the coil and tube as shown in Fig. 4. Set the
anode potential to between 90 and 250 volts and then vary the current flowing
through the coil until the curvature of the edge of the shadow is estimated to be
the same as some small round object whose radius can be easily measured. A
dime, a piece of wooden dowel, or a pencil will do.

Make measurements for several different anode potentials. (1 volt = 1.6 X
10-19 joule per elementary charge.) Also, use several different magnetic
fields. (How do you know the magnetic field?) Calculate the mass of the elec-
tron.



deflecting
electrodes
(under cap)

Figure 2
The drawing (left) shows the shadow of the radial beam we expect to see when there is no
magnetic field. On the right is a picture of the tube in actual operation with no magnetic
field applied; the two narrow shadows are caused by the wires supporting the center cap.

Figure 3
The shape the beam should have when the tube is in a magnetic field is shown on the
left. On the right is the appearance of the beam when it is deflected by a magnetic field.



Figure 4 (a)
Circuit connections for Type 6AF6 electron ray tube.

Figure 4 (b)
Circuit for coil.

Would it be possible to use the earth's magnetic field to deflect the beam?
How large a tube would you need? Assuming the earth had no magnetic field,
would it be practical to determine the mass of an electron by accelerating it
horizontally through a known potential difference and subsequently observing
its deflection in the earth's gravitational field?



44 The Magnetic Field Near
a Long, Straight Wire

In Experiment 41 we used a compass to determine the magnetic field in the
center of a loop of wire. Now we shall use the same method to find the field
about a long, straight wire and its dependence on the distance from the wire.

Support a long, straight wire next to a sheet of graph paper which is aligned
parallel to the horizontal component of the earth's field as shown in Fig. 1.
The wire is held in position next to the table's edge by a piece of tape, and the
graph paper is taped to the table top. Be sure there are no iron objects within
50 cm of the sheet of graph paper on which you will move the compass around.
Except for the straight vertical section, all parts of the long wire should be at
least 50 cm from the paper.

Allow a constant current of about 5 amperes to flow through the wire, and
determine the direction of the field around it. To find the magnitude of the
field, measure the deflection of the compass needle. Do this for different
distances out to about 20 cm, moving the compass in steps along a line parallel
to the horizontal component of the earth's field. If you try to measure the field
at a distance comparable to the length of the compass needle, you will have
large errors, since different parts of the needle are subject to widely varying
forces. It is therefore best to start with the center of the compass about 5 cm
from the wire.

How does the strength of the field due to the current vary as a function of the
distance from the wire? How do you arrive at this conclusion?

Why was it necessary to keep the rest of the wire and iron objects far away
from the compass?

How would the results have differed if the vertical wire had been only 20 cm
long?

How would the accuracy of your results have been affected if you had used a
current 100 times larger? One 100 times smaller?

Set up two parallel vertical wires about 20 cm apart in a plane parallel to the
direction of the earth's field. Find how the magnetic field varies along a line
between them (a) when the currents in the wires are in opposite directions; (b)
when the two currents are in the same direction. How do you explain your
results?
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45 Magnetic Circulation

In Experiment 44 you measured the magnetic field B near a long, straight

wire carrying a current and found the relationship B = K !,with the direc-
T

tion of the field always perpendicular to the current. In Fig. 1 the field

strengths along the two concentric circles are B1 = K !.-- and B2 = K !.--, with
T1 T2

the field direction tangent to the circumferences of the circles. If in each case
we multiply the field by the circumference of the circle, we obtain the circula-
tion for each of the circular paths. The magnetic circulation is, therefore,

I
21TT1B 1 in one case and 21TT2B2 in the other. Since B = K -, we know that

T

21Tr1B1 = 21Tr2B2 = 21TKI, which means that the magnetic circulation is in-
dependent of the size of the circles.

The question now arises as to whether or not the circulation is the same for
all closed loops regardless of their shape or size. We can investigate this by
measuring the circulation along an arbitrary closed loop such as that shown in
Fig. 2. Since this irregular loop is not a circle concentric about the current, the



magnetic field is not tangent to the path except at a few points, nor does it have
the same magnitude at all points along the path. We can overcome this prob-
lem by dividing the path into n small segments that are short enough to be es-
sentially straight and along which the field does not change appreciably. The
contribution of each segment to the total circulation is then I1S B cos () where
I1S is the length of the segment and B cos () is the component of B along I1S.
(See Fig. 3.) The total circulation around the loop is then equal to

Set up the apparatus as shown in Fig. 4 and on the paper draw an irregular
polygon of 7 to 10 sides whose lengths range from about 7 cm to 13 cm. (Don't
copy the polygon shown in Fig. 4.) With the probe coil at the center of a



Figure 4
The photograph shows the
large, 8-turn square coil which
provides the current I about
which the circulation is mea-
sured, and the small circular
probe coil used to determine
8 cos (J aligned at the center of
one of the segments of a poly-
gon with its axis parallel to the
segment. The two coils should
be connected to separate bat-
teries, as shown in the diagram.

large

square
coil

connect here
for low

V currents

small

probe
coil

1.5
volts



straight segment and its axis parallel to the segment, a current in the probe
coil that causes the needle to align itself perpendicular to the segment will
produce a magnetic field at the center of the probe coil that is just equal to
-B cos (),as shown in Fig. 5.

Connect the probe coil and the large square coil to their respective batteries
and adjust the current in the square coil to 3.0 amp. (Why must this current
be kept constant during the measurement?) Now you can use the probe coil
to get the total circulation around the polygon you have drawn. Since you do
not know the proportionality factor relating the current Ip in the probe coil to
the field that Ip produces at the center of the probe coil, you will have to express
the total circulation in terms of as and Ip• You can then compare the sum of
all the products aSIp found for each segment with the value 2mI'p, which is the
circulation around a circular path like one of those in Fig. 1, expressed in
terms of as and Ip.

~
polygon
segments

probe
coil

CD CD CD
Figure 5
(a) The vector diagram showing the relationship between S, B cas (J, and Bp• the field at the
center of the probe coil due to the current in the probe coil. (b) Only when -Bp is equal to
B cas (J does the compass needle in the probe coil point at right angles to the axis of the
probe coil.

----------
axis of
probe coil

---------axis of
probe coil



First measure Ip ac B cos e and liS for each side of the polygon and find their
sum. After making a few readings you may find a side where you must reverse
the current in the probe coil in order to deflect the compass at right angles to
the probe-coil axis. How does this affect the contribution to the magnetic cir-
culation made by this side?

Now, to find the circulation around a circular path in terms of liS and Ip,

place the probe coil so that its axis is tangent to a circle centered around a
long straight wire at a point where the compass needle, acted upon only by
the earth's field, points tqward the long wire. When a constant current of
about 5 amperes is sent through the long wire, the compass needle will be
deflected. Determine the Cllrrent I' p in the probe coil which will cause the
needle to point again toward the wire. This current I' p is the current that
produces a field equal and opposite to the magnetic field produced by the
current in the straight wire. Now, to find the circulation around the circle all
you need to do is calculate 2mI' p where r is the radius of the circle.

What effect does the current I and the number of turns on the square coil
have on the circulation? Does the earth's magnetic field affect the circulation?

How does the circulation around the circle compare with that around the
polygon? How does the circulation around your polygon compare with that
of your classmates using different polygons? What do you conclude?

Now find the circulation around a polygon more or less like that in Fig. 6
that does not enclose a current. Do your results agree with the expression
27TKI for the circulation?

What would be the circulation about the path shown in Fig. 7?

large
square
coil



Randomness in
Radioactive Decay 46

Radioactive elements emit particles which can be counted by a Geiger
counter. Each click of the counter represents the decay of a single atomic
nucleus. What can we find out about the rate at which a radioactive sample
decays?

Place the probe of a Geiger counter far enough from a radioactive sample
that the clicks come slowly enough to count easily. Once the probe and
counter are in position, do not move them. Make a few 10-sec practice counts
and then count the clicks continuously for twenty minutes, recording the num-
ber counted during each 10-sec interval. You will undoubtedly find that the
number of counts per interval will vary.

Make a bar graph of your results, plotting the number of intervals N, in
which k clicks are heard, as a function of k. From this graph, what do you
estimate the average counting rate to be?

Now add the count obtained in the second 10-sec interval to the count ob-
tained in the first, and divide by two to find the average counting rate over a 20-
sec interval. Then add the count found in the third interval to the sum of the
counts in the first two intervals and divide by three to find the average rate over
a 30-sec interval. Continue this process, interval by interval, until you arrive at
the average counting rate over a period of 15 to 20 minutes. How does the
average rate over the whole period compare with the estimate you made from
the bar graph? Plot the average counting rates obtained in this way as a func-
tion of the total count used for each successive calculation.

How does the accuracy of the measurement of the counting rate appear to
depend on the total number of counts used in the calculation? What counting
rate would you expect to find if you counted clicks for two hours? Would this
increase your accuracy?

Since only a small fraction of the particles emitted by the sample hit the
counter, the counting rate you obtained is much less than the rate of decay of
the sample. How would you calculate the average number of atoms that dis-
integrate in each second (the rate of decay of the sample)?

Can you determine the half-life of the sample from your measurements?
You can do this experiment using a cloud chamber and a weak radioactive

sample on a needle tip inside the chamber. How would the counting rate be
related to the rate of decay?



47 The Spectrum of Hydrogen
and Planck's Constant

The spectral lines of atomic hydrogen offer a good opportunity for compar-
ing theory with observation. In this experiment you will measure the wave-
lengths of three spectral lines of hydrogen. From the numerical relationships
between these wavelengths and the wave theory of atomic energy levels you
can calculate Planck's constant.

Figure 1
Make sure the sheet of paper under the telescope base is taut.



Photographs (Fig. 1 and 2) and schematic drawing (Fig. 3) show the
spectrometer you will be using. Several adjustments are necessary to bring the
spectrometer into operating conditions. First you want to have the telescope
focused on infinity. It is best to remove the telescope from its mount for this
purpose, and focus it on a distant object. With the telescope back on its mount,
look at the light source and make sure that the cross hair and slit are aligned
vertically. Now, with the slit cap off, move the slit back and forth until you
find the position that yields the sharpest image of the slit. Where is the image
of the slit? To be sure the diffraction grating is parallel to the slit, look at one
of the lines (not the central maximum) while rotating the grating. Can you
tell when the grating is parallel to the slit? Why? A narrow slit compatible
with a reasonably bright image of the slit is most desirable.

You know from your study of waves that the wavelength, >.., is related to the
distance between the lines of the grating, d, and the diffraction angle, 0, through
the following relation:

You can calibrate the spectrometer by trying it on a spectral line of known
wavelength and marking the positions of the notch at the center of the base of
the telescope with a sharp pencil. The distance between the two marks is

Figure 2
After completion of all the adjustments, fasten the collimator and telescope to their mounts.
Why is it important to have U"legrating exactly over the pivot point of the telescope?
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proportional to A. What is the constant of proportionality? A convenient line
to use is the green line of the mercury spectrum (5461 A). You can see this
line and a few others by using an uncoated fluorescent bulb or a mercury dis-
charge tube as a light source.

Now replace the fluorescent bulb with the hydrogen discharge tube. The
intensity of this tube is much less than that of the fluorescent bulb, and you may
find it worthwhile to work in a darkened room. Scan through the range of
angles corresponding to the visible spectrum. How many spectral lines do you
see? What are their wavelengths?

We know from the study of inelastic collisions between electrons and atoms
(see text, Section 26-3) that the frequency of an emitted spectral line, v, is

given by v = Ei
~ Er, where Ei and Er are the energies of the atom before and

after the emission of the photon and h is Planck's constant. For atomic hydro-
gen the wave theory of energy levels (text, Section 26-5) tells us that the en-
ergy levels have the following values:

Let us denote the value of n for Ei and Er in the first equation by ni and nr.

Then, by combining the two equations,



· cor,smcev= -,
A

From the ratios of the inverse of the wavelengths, can you tell which energy
levels were involved in emitting your spectral lines? (Hint: Assume that the
lower level is the same for all your lines. )

After you are sure of the values of nj and nf for the three spectral lines, you
know all the quantities in the last equation except Planck's constant. Calculate
it. Using all the information you have, what is the accuracy of your determina-
tion of h? What is the accuracy of the best value of h obtained from a histogram
of all the class results?



Table of Trigonometric Functions

sin (read down)

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0° .0000 .0017 .0035 .0052 .0070 .0087 .0105 .0122 .0140 .0157 .0175 89°
1° .0175 .0192 .0209 .0227 .0244 .0262 .0279 .0297 .0314 .0332 .0349 88°
2° .0349 .0366 .0384 .0401 .0419 .0436 .0454 .0471 .0488 .0506 .0523 87°
3° .0523 .0541 .0558 .0576 .0593 .0610 .0628 .0645 .0663 .0680 .0698 86°
4° .0698 .0715 .0732 .0750 .0767 .0785 .0802 .0819 .0837 .0854 .0872 85°

5° .0872 .0889 .0906 .0924 .0941 .0958 .0976 .0993 .1011 .1028 .1045 84°
6° .1045 .1063 .1080 .1097 .1115 .1132 .1149 .1167 .1184 .1201 .1219 83°
7° .1219 .1236 .1253 .1271 .1288 .1305 .1323 .1340 .1357 .1374 .1392 82°
8° .1392 .1409 .1426 .1444 .1461 .1478 .1495 .1513 .1530 .1547 .1564 81°
9° .1564 .1582 .1599 .1616 .1633 .1650 .1668 .1685 .1702 .1719 .1736 80°

10° .1736 .1754 .1771 .1788 .1805 .1822 .1840 .1857 .1874 .1891 .1908 79°
11° .1908 .1925 .1942 .1959 .1977 .1994 .2011 .2028 .2045 .2062 .2079 780'
12° .2079 .2096 .2113 .3130 .2147 .2164 .2181 .2198 .2115 .2233 .2250 77°
13° .2250 .2267 .2284 .2300 .2317 .2334 .2351 .2368 .2385 .2402 .2419 76°
14° .2419 .2436 .2453 .2470 .2487 .2504 .2521 .2538 .2554 .2571 .2588 75°

15° .2588 .2605 .2622 .2639 .2656 .2672 .2689 .2706 .2723 .2740 .2756 74°
16° .2756 .2773 .2790 .2807 .2823 .2840 .2857 .2874 .2890 .2907 .2924 73°
17° .2924 .2940 .2957 .2974 .2990 .3007 .3024 .3040 .3057 .3074 .3090 72°
18° .3090 .3107 .3123 .3140 .3156 .3173 .3190 .3206 .3223 .3239 .3256 71°
19° .3256 .3272 .3289 .3305 .3322 .3338 .3355 .3371 .3387 .3404 .3420 70°

20° .3420 .3437 .3453 .3469 .3486 .3502 .3518 .3535 .3551 .3567 .3584 69°
21° .3584 .3600 .3616 .3633 .3649 .3665 .3681 .3697 .3714 .3730 .3746 68°
22° .3~46 .3762 .3778 .3795 .3811 .3827 .3843 .3859 .3875 .3891 .3907 67°
23° .3 07 .3923 .3939 .3955 .3971 .3987 .4003 .4019 .4035 .4051 .4067 66°
24° .4067 .4083 .4099 .4115 .4131 .4147 .4163 .4179 .4195 .4210 .4226 65°

25° .4226 .4242 .4258 .4274 .4289 .4305 .4321 .4337 .4352 .4368 .4384 64°
26° .4384 .4399 .4415 .4431 .4446 .4462 .4478 .4493 .4509 .4524 .4540 63°
27° .4540 .4555 .4571 .4586 .4602 .4617 .4633 .4648 .4664 .4679 .4695 62°
28° .4695 .4710 .4726 .4741 .4756 .4772 .4787 .4802 .4818 .4833 .4848 61°
29° .4848 .4863 .4879 .4894 .4909 .4924 .4939 .4955 .4970 .4985 .5000 60°

30° .5000 .5015 .5030 .5045 .5060 .5075 .5090 .5105 .5120 .5135 .5150 59°
31° .5150 .5165 .5180 .5195 .5210 .5225 .5240 .5255 .5270 .5284 .5299 58°
32° .5299 .5314 .5329 .5344 .5358 .5373 .5388 .5402 .5417 .5432 .5446 57°
33° .5446 .5461 .5476 .5490 .5505 .5519 .5534 .5548 .5563 .5577 .5592 56°
34° .5592 .5606 .5621 .5635 .5650 .5664 .5678 .5693 .5707 .5721 .5736 55°

35° .5736 .5750 .5764 .5779 .5793 .5807 .5821 .5835 .5850 .5864 .5878 54°
36° .5878 .5892 .5906 .5920 .5934 .5948 .5962 .5976 .5990 .6004 .6018 53°
37° .6018 .6032 .6046 .6060 .6074 .6088 .6101 .6115 .6129 .6143 .6157 52°
38° .6157 .6170 .6184 .6198 .6211 .6225 .6239 .6252 .6266 .6280 .6293 51°
39° .6293 .6307 .6320 .6334 .6347 .6361 .6374 .6388 .6401 .6414 .6428 50°

40° .6428 .6441 .6455 .6468 .6481 .6494 .6508 .6521 .6534 .6547 .6561 49°
41° .6561 .6574 .6587 .6600 .6613 .6626 .6639 .6652 .6665 .6678 .6691 48°
42° .6691 .6704 .6717 .6730 .6743 .6756 .6769 .6782 .6794 .6807 .6820 47°
43° .6820 .6833 .6845 .6858 .6871 .6884 .6896 .6909 .6921 .6934 .6947 46°
44° .6947 .6959 .6972 .6984 .6997 .7009 .7022 .7034 .7046 .7059 .7071 45°

.9 .8 .7 .6 .5 .4 .3 .2 .1 .0

cos (read up)

102



Table of Trigonometric Functions

sin (read down)

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

45° .7071 .7083 .7096 .7108 .7120 .7133 .7145 .7157 .7169 .7181 .7193 44°
46° .7193 .7206 .7218 .7230 .7242 .7254 .7266 .7278 .7290 .7302 .7314 43°
47° .7314 .7325 .7337 .7349 .7361 .7373 .7385 .7396 .7408 .7420 .7431 42°
48° .7431 .7443 .7455 .7466 .7478 .7490 .7501 .7513 .7524 .7536 .7547 41°
49° .7547 .7559 .7570 .7581 .7593 .7604 .7615 .7627 .7638 .7649 .7660 40°

50° .7660 .7672 .7683 .7694 .7705 .7716 .7727 .7738 .7749 .7760 .7771 39°
51° .7771 .7782 .7793 .7804 .7815 .7826 .7837 .7848 .7859 .7869 .7880 38°
52° .7880 .7891 .7902 .7912 .7923 .7934 .7944 .7955 .7965 .7976 .7986 37°
53° .7986 .7997 .8007 .8018 .8028 .8039 .8049 .8059 .8070 .8080 .8090 36°
54° .8090 .8100 .8111 .8121 .8131 .8141 .8151 .8161 .8171 .8181 .8192 35°

55° .8192 .8202 .8211 .8221 .8231 .8241 .8251 .8261 .8271 .8281 .8290 34°
56° .8290 .8300 .8310 .8320 .8329 .8339 .8348 .8358 .8368 .8377 .8387 33°
57° .8387 .8396 .8406 .8415 .8425 .8434 .8443 .8453 .8462 .8471 .8480 32°
58° .8480 .8490 .8499 .8508 .8517 .8526 .8536 .8545 .8554 .8563 .8572 31°
59° .8572 .8581 .8590 .8599 .8607 .8616 .8625 .8634 .8643 .8652 .8660 30°

60° .8660 .8669 .8678 .8686 .8695 .8704 .8712 .8721 .8729 .8738 .8746 29°
61° .8746 .8755 .8763 .8771 .8780 .8788 .8796 .8805 .8813 .8821 .8829 28°
62° .8829 .8838 .8846 .8854 .8862 .8870 .8878 .8886 .8894 .8902 .8910 27°
63° .8910 .8918 .8926 .8934 .8942 .8949 .8957 .8965 .8973 .8980 .8988 26°
64° .8988 .8996 .9003 .9011 .9018 .9026 .9033 .9041 .9048 .9056 .9063 25°

65° .9063 .9070 .9078 .9085 .9092 .9100 .9107 .9114 .9121 .9128 .9135 24°
66° .9135 .9143 .9150 .9157 .9164 .9171 .9178 .9184 .9191 .9198 .9205 23°
67° .9205 .9212 .9219 .9225 .9232 .9239 .9245 .9252 .9259 .9265 .9272 22°
68° .9272 .9278 .9285 .9291 .9298 .9304 .9311 .9317 .9323 .9330 .9336 21°
69° .9336 .9342 .9348 .9354 .9361 .9367 .9373 .9379 .9385 .9391 .9397 20°

70° .9397 .9403 .9409 .9415 .9421 .9426 .9432 .9438 .9444 .9449 .9455 19°
71° .9455 .9461 .9466 .9472 .9478 .9483 .9489 .9494 .9500 .9505 .9511 18°
72° .9511 .9516 .9521 .9527 .9532 .9537 .9542 .9548 .9553 .9558 .9563 17°
73° .9563 .9568 .9573 .9578 .9583 .9588 .9593 .9598 .9603 .9608 .9613 16°
74° .9613 .9617 .9622 .9627 .9632 .9636 .9641 .9646 .9650 .9655 .9659 15°

75° .9659 .9664 .9668 .9673 .9677 .9681 .9686 .9690 .9694 .9699 .9703 14°
76° .9703 .9707 .9711 .9715 .9720 .9724 .9728 .9732 .9736 .9740 .9744 13°
77° .9744 .9748 .9751 .9755 .9759 .9763 .9767 .9770 .9774 .9778 .9781 12°
78° .9781 .9785 .9789 .9792 .9796 .9799 .9803 .9806 .9810 .9813 .9816 11°
79° .9816 .9820 .9823 .9826 .9829 .9833 .9836 .9839 .9842 .9845 .9848 10°

80° .9848 .9851 .9854 .9857 .9860 .9863 .9866 .9869 .9871 .9874 .9877 9°
81° .9877 .9880 .9882 .9885 .9888 .9890 .9893 .9895 .9898 .9900 .9903 8°
82° .9903 .9905 .9907 .9910 .9912 .9914 .9917 .9919 .9921 .9923 .9925 7°
83° .9925 .9928 .9930 .9932 .9934 .9936 .9938 .9940 .9942 .9943 .9945 6°
84° .9945 .9947 .9949 .9951 .9952 .9954 .9956 .9957 .9959 .9960 .9962 5°

85° .9962 .9963 .9965 .9966 .9968 .9969 .9971 .9972 .9973 .9974 .9976 4°
86° .9976 .9977 .9978 .9979 .9980 .9981 .9982 .9983 .9984 .9985 .9986 3°
87° .9986 .9987 .9988 .9989 .9990 .9990 .9991 .9992 .9993 .9993 .9994 2°
88° .9994 .9995 .9995 .9996 .9996 .9997 .9997 .9997 .9998 .9998 .9998 1°
89° .9998 .9999 .9999 .9999 .9999 1.000 1.000 1.000 1.000 1.000 1.000 0°
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Table of Trigonometric Functions

tan (read down)

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0° .0000 .0017 .0035 .0052 .0070 .0087 .0105 .0122 .0140 .0157 .0175 89°
1° .0175 .0192 .0209 .0227 .0244 .0262 .0279 .0297 .0314 .0332 .0349 83°
2° .0349 .0367 .0384 .0402 .0419 .0437 .0454 .0472 .0489 .0507 .0524 87°
3° .0524 .0542 .0559 .0577 .0594 .0612 .0629 .0647 .0664 .0682 .0699 86°
4° .0699 .0717 .0734 .0752 .0769 .0787 .0805 .0822 .0840 .0857 .0875 85°

5° .0875 .0892 .0910 .0928 .0945 .0963 .0981 .0998 .1016 .1033 .1051 84°
6° .1051 .1069 .1086 .1104 .1122 .1139 .1157 .1175 .1192 .1210 .1228 83°
7° .1228 .1246 .1263 .1281 .1299 .1317 .1334 .1352 .1370 .1388 .1405 82°
8° .1405 .1423 .1441 .1459 .1477 .1495 .1512 .1530 .1548 .1566 .1584 81°
9° .1584 .1602 .1620 .1638 .1655 .1673 .1691 .1709 .1727 .1745 .1763 80°

10° .1763 .1781 .1799 .1817 .1835 .1853 .1871 .1890 .1908 .1926 .1944 79°
11° .1944 .1962 .1980 .1998 .2016 .2035 .2053 .2071 .2089 .2107 .2126 78°
12° .2126 .2144 .2162 .2180 .2199 .2217 .2235 .2254 .2272 .2290 .2309 77°
13° .2309 .2327 .2345 .2364 .2382 .2401 .2419 .2438 .2456 .2475 .2493 76°
14° .2493 .2512 .2530 .2549 .2568 .2586 .2605 .2623 .2642 .2661 .2679 75°

15° .2679 .2698 .2717 .2736 .2754 .2773 .2792 .2811 .2830 .2849 .2867 74°
16° .2867 .2886 .2905 .2924 .2943 .2962 .2981 .3000 .3019 .3038 .3057 73°
17° .3057 .3076 .3096 .3115 .3134 .3153 .3172 .3119 .3211 .3230 .3249 72°
18° .3249 .3269 .3288 .3307 .3327 .3346 .3365 .3385 .3404 .3424 .3443 7fO
19° .3443 .3463 .3482 .3502 .3522 .3541 .3561 .3581 .3600 .3620 .3640 70°

20° .3640 .3659 .3679 .3699 .3719 .3739 .3759 .3779 .3799 .38J9 .3839 69°
21° .3839 .3859 .3879 .3899 .3919 .3939 .3959 .3979 .4000 .4020 .4040 68°
22° .4040 .4061 .4081 .4101 .4122 .4142 .4163 .4183 .4204 .4224 .4245 67°
23° .4245 .4265 .4286 .4307 .4327 .4348 .4369 .4390 .4411 .4431 .4452 66°
24° .4452 .4473 .4494 .4515 .4536 .4557 .4578 .4599 .4621 .4642 .4663 65°

25° .4663 .4684 .4706 .4727 .4748 .4770 .4791 .4813 .4834 .4856 .4877 64°
26° .4877 .4899 .4921 .4942 .4964 .4986 .5008 .5029 .5051 .5073 .5095 63°
27° .5095 .5117 .5139 .5161 .5184 .5206 .5228 .5250 .5272 .5295 .5317 62°
28° .5317 .5340 .5362 .5384 .5407 .5430 .5452 .5475 .5498 .5520 .5543 61°
29° .5543 .5566 .5589 .5612 .5635 .5658 .5681 .5704 .5727 .5750 .5774 60°

30° .5774 .5797 .5820 .5844 .5867 .5890 .5914 .5938 .5961 .5985 .6009 59°
31° .6009 .6032 .6056 .6080 .6104 .6128 .6152 .6176 .6200 .6224 .6249 58°
32° .6249 .6273 .6297 .6322 .6346 .6371 .6395 .6420 .6445 .6469 .6494 57°
33° .6494 .6519 .6544 .6569 .6594 .6619 .6644 .6669 .6694 .6720 .6745 56°
34° .6745 .6771 .6796 .6822 .6847 .6873 .6899 .6924 .6950 .6976 .7002 55°

35° .7002 .7028 .7054 .7080 .7107 .7133 .7159 .7186 .7212 .7239 .7265 54°
36° .7265 .7292 .7319 .7346 .7373 .7400 .7427 .7454 .7481 .7508 .7536 53°
37° .7536 .7563 .7590 .7618 .7646 .7673 .7701 .7729 .7757 .7785 .7813 52°
38° .7813 .7841 .7869 .7898 .7926 .7954 .7983 .8012 .8040 .8069 .8098 51°
39° .8098 .8127 .8156 .8185 .8214 .8243 .8273 .8302 .8332 .8361 .8391 50°

40° .8391 .8421 .8451 .8481 .8511 .8541 .8571 .8601 .8632 .8662 .8693 49°
41° .8693 .8724 .8754 .8785 .8816 .8847 .8878 .9810 .8941 .8972 .9004 48°
42° .~004 .9036 .9067 .9099 .9131 .9163 .9195 .9228 .9260 .9293 .9325 47°
43° .9325 .9358 .9391 .9424 .9457 .9490 .9523 .9556 .9590 .9623 .9657 46°
44° .9657 .9691 .9725 .9759 .9793 .9827 .9861 .9896 .9930 .9965 1.000 45°
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Table of Trigonometric Functions

tan (read down)

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

45° 1.000 1.003 1.007 1.011 1.014 1.018 1.021 1.025 1.028 1.032 1.036 44°
46° 1.036 1.039 1.043 1.046 1.050 1.054 1.057 1.061 1.065 1.069 1.072 43°
47° 1.072 1.076 1.080 1.084 1.087 1.091 1.095 1.099 1.103 1.107 1.111 42°
48° 1.111 1.115 1.118 1.122 1.126 1.130 1.134 1.138 1.142 1.146 1.150 41°
49° 1.150 1.154 1.159 1.163 1.167 1.171 1.175 1.179 1.183 1.188 1.192 40°

50° 1.192 1.196 1.200 1.205 1.209 1.213 1.217 1.222 1.226 1.230 1.235 39°
51° 1.235 1.239 1.244 1.248 1.253 1.257 1.262 1.266 1.271 1.275 1.280 38°
52° 1.280 1.285 1.289 1.294 1.299 1.303 1.308 1.313 1.317 1.322 1.327 37°
53° 1.327 1.332 1.337 1.342 1.347 1.351 1.356 1.361 1.366 1.371 1.376 36°
54° 1.376 1.381 1.387 1.392 1.397 1.402 1.407 1.412 1.418 1.423 1.428 35°

55° 1.428 1.433 1.439 1.444 1.450 1.455 1.460 1.466 1.471 1.477 1.483 34°
56° 1.483 1.488 1.494 1.499 1.505 1.511 1.517 1.522 1.528 1.534 1.540 33°
57° 1.540 1.546 1.552 1.558 1.564 1.570 1.576 1.582 1.588 1.594 1.600 32°
58° 1.600 1.607 1.613 1.619 1.625 1.632 1.638 1.645 1.651 1.658 1.664 3e
59° 1.664 1.671 1.678 1.684 1.691 1.698 1.704 1.711 1.718 1.725 1.732 30°

60° 1.732 1.739 1.746 1.753 1.760 1.767 1.775 1.782 1.789 1.797 1.804 29°
61° 1.804 1.811 1.819 1.827 1.834 1.842 1.849 1.857 1.865 1.873 1.881 28°
62° 1.881 1.889 1.897 1.905 1.913 1.921 1.929 1.937 1.946 1.954 1.963 27°
63° 1.963 1.971 1.980 1.988 1.997 2.006 2.014 2.023 2.032 2.041 2.050 26°
64° 2.050 2.059 2.069 2.078 2.087 2.097 2.106 2.116 2.125 2.135 2.145 25°

65° 2.145 2.154 2.164 2.174 2.184 2.194 2.204 2.215 2.225 2.236 2.246 24°
66° 2.246 2.257 2.267 2.278 2.289 2.300 2.311 2.322 2.333 2.344 2.356 23°
67° 2.356 2.3&7 2.379 2.391 2.402 2.414 2.426 2.438 2.450 2.463 2.475 22°
68° 2.475 2.488 2.500 2.513 2.526 2.539 2.552 2.565 2.578 2.592 2.605 21°
69° 2.605 2.619 2.633 2.646 2.660 2.675 2.689 2.703 2.718 2.733 2.747 20°

70° 2.747 2.762 2.778 2.793 2.808 2.824 2.840 2.856 2.872 2.888 2.904 19°
71° 2.904 2.921 2.937 2.954 2.971 2.989 3.006 3.024 3.042 3.060 3.078 18°
72° 3.078 3.096 3.115 3.133 3.152 3.172 3.191 3.211 3.230 3.251 3.271 17°
73° 3.271 3.291 3.312 3.333 3.354 3.376 3.398 3.420 3.442 3.465 3.487 16°
74° 3.487 3.511 3.534 3.558 3.582 3.606 3.630 3.655 3.681 3.706 3.732 15°

75° 3.732 3.758 3.785 3.812 3.839 3.867 3.895 3.923 3.952 3.981 4.011 14°
76° 4.011 4.041 4.071 4.102 4.134 4.165 4.198 4.230 4.264 4.297 4.331 13°
77° 4.331 4.366 4.402 4.437 4.474 4.511 4.548 4.586 4.625 4.665 4.705 12°
78° 4.705 4.745 4.787 4.829 4.872 4.915 4.959 5.005 5.050 5.097 5.145 11°
79° 5.145 5.193 5.242 5.292 5.343 5.396 5.449 5.503 5.558 5.614 5.671 10°

80° 5.671 5.730 5.789 5.850 5.912 5.976 6.041 6.107 6.174 6.243 6.314 9°
8e 6.314 6.386 6.460 6.535 6.612 6.691 6.772 6.855 6.940 7.026 7.115 8°
82° 7.115 7.207 7.300 7.396 7.495 7.596 7.700 7.806 7.916 8.028 8.144 7°
83° 8.144 8.264 8.386 8.513 8.643 8.777 8.915 9.058 9.205 9.357 9.514 6°
84° 9.514 9.677 9.845 10.02 10.20 10.39 10.58 10.78 10.99 11.20 11.43 5°

85° 11.43 11.66 11.91 12.16 12.43 12.71 13.00 13.30 13.62 13.95 14.30 4°
86° 14.30 14.67 15.06 15.46 15.89 16.35 16.83 17.34 17.89 18.46 19.08 3°
87° 19.08 19.74 20.45 21.20 22.02 22.90 23.86 24.90 26.03 27.27 28.64 2°
88° 28.64 30.14 31.82 33.69 35.80 38.19 40.92 44.07 47.74 52.08 57.29 e
89° 57.29 63.66 71.62 81.85 95.49 114.6 143.2 191.0 286.5 573.0 00 0°
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Gravitational constant: G = 6.670 X 10-11 m
kg-see2

Boltzmann's constant: k = 1.3805 X 10-23 jouleOK

Constant in Coulomb's law: k = 2.306 X 10-28 newton-m
2

(e1em. eh.)2
8.988 X 109 newton-m

2

eoulomb2

Mass of electron: me = 9.109 X 10-31 kg

Mass of proton: mp = 1.672 X 10-27 kg

Constant in Ampere's circuital law: K = 2 X 10-7 newto2n (exact, by definition)
amp

Planck's constant: h = 6.626 X 10-34 joule-see = 4.136 X 10-15 ev-see

1 atomic mass unit = 1.66 X 10-27 kg

1 electron volt = 1.602 X 10-19 joule

1 coulomb = 6.242 X 1018e1em. eh.




