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Hydraulic Devices

INTRODUCTION

Hydraulic devices are used in many ways
in our technical society. Many of these
devices were developed in the nineteenth
century, before electrical power was available.
In those days the engineering work often
involved applications of water and steam
power. Hydraulic devices were an outgrowth
of the technological needs of the times.

Today we still find many hydraulic
(fluid-power) devices in our homes, hospitals,
and industrial plants. Fluid-powered devices
are relatively cheap, easy to maintain, and
highly reliable; they are still very much a part
of our technology. The basic physical prin-
ciples of hydraulic devices are now well-
known, so most hydraulic engineering today
involves only the improvement of materials,
methods of manufacture, and the develop-
ment of new applications of fluid-operated
devices. A few years ago an entirely new use
of fluid technology resulted from the develop-
ment of fluidic amplifiers, which sense and
switch like their electronic counterparts. They
are extremely reliable and rugged, so they are
used in applications which would be too harsh
for other kinds of amplifiers.

GOALS

In this module you will study the basic
physics of fluids in order to understand some

simple hydraulic devices. The goals of the
module are outlined here. Read them before
starting on the module, and refer to them as
you work through the module.

The main goal of this module is to help
you learn the basic principles and concepts of
hydraulics. When you have completed the
module, you should have a knowledge and
understanding of the following:

1.  Density of materials.
2. Properties of liquids.

3. The relationship between force and
pressure.

4. The way in which pressure increases with
depth in a liquid.

5. The way in which pressure is transmitted
through fluids.

6. Pressure measurements.

7.  The mechanical advantage and efficiency
of hydraulic jacks.

8. The buoyant forces exerted on objects
by liquids.

9. The way in which pressure depends on
the rate of flow of a fluid.




SECTION A

HYDRAULIC DEVICES

A treatment of the properties of liquids
is an important component of this module.
You will study several devices in which the
static (stationary) and dynamic (moving)
properties of liquids are used to perform
useful functions. The devices to be studied
include automobile brakes, the hydraulic jack,
the toilet tank, the siphon, the aspirator, the
hydrometer, pressure gauges, and the
sphygmomanometer.

In an automobile brake system, the
brake fluid transmits pedal pressure to a brake
shoe (or a pad for a disc brake). The brake
shoe rubs against the brake drum and pro-
duces a frictional force to slow the auto. A
2-ton car, or a 10-ton truck, can be stopped
by applying a force of a few pounds to the
brake pedal. Why is such a small applied force
able to stop a speeding car? What happens if
there is air in the brake line? You will learn the
answers to these and other questions as you
proceed through the module.

The toilet tank uses a system of levers to
release the water and a float-lever system to
shut off the water supply after the tank has
refilled. Did you ever watch the operation of
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the tank? What happens to shut off the water
filling the tank?

The aspirator is a pump whose operation
depends on the properties of a flowing liquid.
You will see this device in operation in the
laboratory.

The hydraulic jack has the effect of
“magnifying” a force, so that a heavy object,
such as a car, can be lifted with ease.

A siphon is a simple device (usually just
a piece of tubing) which enables a liquid to
flow from one container, over a high point,
then down into a lower container, without
the aid of a pump. It can be used to draw
liquid from the lower part of a container
when the surface is contaminated with scum,
oil, or other unwanted matter. You might also
use it to “borrow” gasoline from the tank of a
car.

Figures 1 through 6 will serve as part of
the basis for our discussions of fluid mechan-
ics. You may need to look back at these
illustrations as you work through the module.

So far we have used many technical
terms without explaining their meaning. Some
you already know, others are new to you. We
will explain most of the terms to you as we
come to them in the module.

WHEEL
CYLINDER

R e T .

DISC
BRAKE

DRUM
BRAKE

Figure 1. An automobile braking system.
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Figure 3. A toilet-tank mechanism.

Figure 2. The carburetor is a device that makes use
of the physical laws which apply to stationary fluids
(hydrostatics) and moving fluids (hydrodynamics).

Figure 4. An aspirator being used in the lab.




Figure 6A.

Figure 6B. A sphygmomanometer.



EXPERIMENT A-1. Devices

A. Auto Jack

Your instructor will provide you with a
portable hydraulic jack that has a base plate
and a load-lifting plate added to it. This
device is a 1.5-ton-capacity jack of the type
used to lift a car. Figure 7 shows this manual-
ly operated miniature garage jack.

Operate the jack; work it up and down.
Use it to lift one student standing on the lift
platform. Measure the force needed to move
the handle to lift the student. Use a spring
balance and read the dial as the handle moves
downward. Fill in the worksheet for this
experiment, which is found at the back of the
module.

1. How many times greater is the lifted
weight than the force applied to the
handle? How shall we describe this

device? Inexpensive? Reliable? Lifts
heavy loads with a small applied force?
Multiplies force?

2. Carefully look over the jack, then

describe briefly what you see.

Did you notice the two cylinders? The
shaft from the smaller cylinder is
attached to the bottom of the handle.
The shaft from the larger cylinder trans-
mits the lifting force to the object being
lifted. Look for these now if you didn’t
find them before.

Which cylinder is longer? The jack
requires many full strokes of the handle
to extend the shaft of the longer cylin-
der its full travel. Why?

What do you notice about the handle? Is
it a lever? What is the approximate
distance from the pivot to the other
end? What is the approximate distance
from the pivot to the shaft of the smaller
cylinder? How many times bigger is the
first length than the second length? Do
you know the significance of this num-
ber? If not, you will soon.

What’s inside the jack? Can you guess?
What reason do you have for your
answer?

Figure 7.




This jack weighs less than 6 1b, costs
about $12, and can lift 3000 1b with about
100-1b force applied to the handle. How does
it work? The answer is described in this
module. We will explain the behavior of fluids
in terms of physical laws. When you under-
stand those laws, the operation of this
hydraulic jack and many other devices will be
clear.

The hydraulic jack illustrates that a
simple two-piston hydraulic system can be
used for force multiplication.

B. A Two-Piston Demonstration System
Using the two-piston demonstration
system (Figure 8) with valves and a pressure

gauge (0-100 Ib/in?):

1. Demonstrate to yourself that the fluid is
almost incompressible.

2. Observe that simple pressure-activated
devices can be operated to control sig-

nals similar to the oil pressure light or
brake lights in a car.

Push down on the smaller-diameter
piston until you develop 80 Ib/in® pres-
sure in the system (you will have to close
the valve between the gauge and the
larger piston to build that pressure). Now,
after adjusting the valves properly, push
down on the larger-diameter piston to
develop an 80 lb/in2 pressure in the
system. Which piston requires a larger
force to produce this pressure? Can you
explain why?

(Optional) Have a test of strength. Let
the instructor press down on the large
piston. Push down on the small piston—
see who can push his piston all the way
down.

(Optional) Place a 5-b weight on the
small piston. What pressure is developed
in the system? Now do it with a 10-1b

Figure 8. A two-piston hydraulic system.



and a 15-1b weight. Try the same weights
on the larger piston. What pressures are
produced? Can you explain the differ-
ences between the two sets of values?

In a hydraulic system, the amount of
fluid stays the same if there is no leak. If
the fluid is incompressible, then the
volume it occupies also is constant when
the pressure changes. This may seem
quite obvious, but if the system were
pneumatic (air operated), the volume
would change as the pressure changed,
since air is easily compressed. Using an
empty syringe, demonstrate that the air
inside is highly compressible by sealing
the exit port with your finger while
operating the plunger. You should be

able to produce a substantial decrease in
volume. What fraction of the original
volume is the compressed volume? When
you release the plunger, it should return
almost to the starting point (keeping the
exit port sealed). If it doesn’t quite
return, try to explain why and check
your answer with your instructor.

C. Other Devices

Examine the other hydraulic devices
displayed in the lab. As you think about what
each one is for and how it operates, some
unanswered questions may come to mind. For
each device write down one or two questions
you would like to have answered. Be sure to
operate the aspirator and the siphon.




PROPERTIES OF LIQUIDS

The behavior of liquids has top billing in
this module. It is important that we establish
several of the basic properties of liquids.
Some of these liquid properties will be very
familiar, others will be new and interesting.

1. A liquid conforms to the shape of its
container. This fact is one of the main
differences between liquids and solids.

2. A liquid seeks its own level. When a
liquid is poured into an open vessel, the
surface of the liquid will reach the same
level in all parts of the vessel.

MMM

Figure 9. A liquid reaches the same level in all parts
of an open vessel.

3. Liquids are incompressible. No matter
how hard you squeeze, you cannot
noticeably change the volume of a
sample of liquid. (There is a tiny bit of
change at high pressures, but it can be
neglected.) This is the most important
difference between a liquid and a gas. A
gas is easily compressed into a smaller
volume. Because of its incompressibility,
the ratio of the mass to the volume is a
distinctive property of a given liquid.
This useful and easily measured property
is called the mass density. The Greek

letter p (rho) is the commonly used
symbol for mass density:

P= {1

where M = mass of the sample in kilo-
grams (kg) and V = the volume of the
sample in cubic meters (m3 ). Mass den-
sity is measured in kg/m®. Since this is a
large unit, mass density is more often
described in gfcm®. 1g/fem® = 10°
kg/m3.

In the English system of units it is more
common to use weight density, which is
the ratio of weight to volume.

= @

where D is the weight density, W is the
weight, and V is the volume. Typical
units used for weight density are Ib/ft’
or ton /yd3 . Table I lists density values for
several common substances. Several
solids are included, even though this
module emphasizes liquids.

A word of caution: the density of a
material depends on its temperature.
Because the volume of a substance
usually changes when its temperature
changes, while the mass and weight
remain unchanged, the density also
changes. To be precise, one should
always give temperature data along with
the density.

Weight density and mass density are
related because the weight of an object is
related to its mass:

W= Mg

where g is the acceleration due to gravity
(9.8 m/s*> or 32 ft/s®). Therefore, the
weight density is simply related to the
mass density by

M
D=—g=
Vg pg (3)



Table I.

Densities of Several Materials at Room Temperature

Mass Density Weight Density

LIQUIDS (g/cm?) (kg/m®) (Ib/ft*)
Water 1.00 1,000 62.4
Alcohol 0.79 790 49.4
Maple Syrup 1.4* 1,400* 87.5%
Ethylene Glycol (Antifreeze) 1.12 1,120 70.0
Glycerine 1.26 -1,260 78.8
Turpentine 0.87 870 544
Mercury 13.5 13,500 843.8
Olive Oil 0.91 910 56.9
SOLIDS

Iron 7.9 7,900 493.8
Copper 8.9 8,900 556.3
Aluminum 2.7 2,700 168.8
Gold 19.4 19,400 1206.3
Glass 2.6* 2,600* 162.5*
Bone 1.8* 1,800* 112.5*
Diamond 3.2% 3,200* 200.0*
Wood 0.7* 700* 43.8*

*Typical value
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Example 1. A sample of metal has a volume
of 0.10 m> and a mass of 790 kg. Determine
its density, and check Table I to see what
material it might be.

Solution. Because mass is specified, we can
most readily determine mass density.

_M
=y
790 kg

0.1m’

=17.9X10* kg/m® = 7.9 g/em’

From the table we see that this is the density
of iron.

Example 2. How many tons of water are
there in a swimming pool 15 ft wide, 30 ft
long, and 4 ft deep?

Solution. The weight can be determined from

the volume of the pool and the weight density
of water:

D=

<=

W =DV

The volume of the pool can be determined
from the dimensions:

V = (15 ft) (30 ft) (4 ft)
= 1800 ft’

From Table I, the weight density of water is
62.4 b/ft>.

W = (62.4 Ib/ft>) (1800 ft>)
= 112,000 Ib

= 56 tons

Sometimes a material is described by its
specific gravity. The specific gravity is a
number which compares the density of the
substance to the density of water.

density of substance

Specific gravity = S. G. =
P g y density of water

Specific gravity is a dimensionless number.
Since the density of water is 1.0 g/cm3, we
can easily calculate the density of any sub-
stance if we know its specific gravity.

Example 3. By law, maple syrup must meet
minimum density standards. The specific
gravity of a sample of maple syrup is 1.412.
What is its density?

Solution.
_ density of syrup
" density of water

density of syrup

1.412 =
1.0 g/cm®

density of syrup = 1.412 g/cm3

One practical use of specific gravity is in
the measurement of the “proof” of alcoholic
solutions, as Table II shows. Notice that the
temperature is specified.

There are many other practical uses for
measurements of specific gravity. For exam-
ple, since the specific gravity of the acid in a
car battery depends on the condition of
charge, the battery can be tested simply by
measuring that specific gravity. Likewise, the
percentage of antifreeze in the cooling system
can be determined through a specific-gravity
measurement. The specific gravity of a liquid
can be measured easily by using a simple
instrument called a Aydrometer.



Table II.

Alcohol Strength and Specific Gravity,
As Measured in the United States

All measurements are made at a temperature of 60°F. -

Percent by volume Proof Specific gravity
0.0 0.0 1.0000
5.0 10.0 0.9928

10.0 20.0 0.9866
15.0 30.0 0.9810
20.0 40.0 0.9759
30.0 60.0 0.9653
40.0 80.0 0.9517
50.0 100.0 0.9342
60.0 120.0 0.9133
70.0 140.0 0.8899

(Table courtesy of Taylor Wine Co., Hammonds-Port, N. Y.)
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EXPERIMENT A-2. Hydrometry

A. A hydrometer is a simple device for
measuring the specific gravity of a liquid.
Hydrometers are used in the chemical indus-
try for process-control and testing. They are
used in the maple syrup, wine, whiskey, and
milk industries for quality control tests.

In its simplest form, the hydrometer is a
rod of wood, or a hollow glass tube, weighted
slightly at one end so that it floats in an
upright position. A scale is usually marked on
it. Each hydrometer, of course, has a certain
fixed mass. When floated in a beaker of water,
it will sink to a certain depth. The water line
is marked 1.0 on the hydrometer, since this is
the specific gravity of water. If the hydrom-
eter is placed into any other liquid and it
comes to rest with the liquid surface at the
1.0 line, then that liquid also has a specific
gravity of 1.0 and a density of 1 g/cms.

~

oo
oo
o
L

.29

r_

v

Figure 10. A hydrometer.

Question 1. Suppose you have a beaker of
liquid which is more dense than water. That
is, it has a higher specific gravity than water.
Each cubic centimeter has mass greater than
one gram. Will the hydrometer sink deeper
into the new liquid than into water?

Question 2. Which hydrometer of Figure 11
has the right scale? Why?

N N
y o
! )
) )
:9' nil
:8‘ .21

\ y

v v

(A) (B)
Figure 11.

1. Obtain a beaker, a hydrometer, and
several different liquids from your in-
structor, and measure the specific gravity
of each liquid. Compare your answers to
the known specific gravity of the liquids
supplied. You may have to look up the
known specific gravity in a book of
tables, such as the Chemical Rubber



Company’s Handbook of Chemistry and
Physics.

2. Your instructor may also ask you to
identify unknown liquids by their speci-
fic gravities.

3. Heat some water in a beaker. With a
hydrometer in the beaker, slowly add
and dissolve sugar into solution. What
range of specific gravity do you mea-
sure? Compare your results to those in a
handbook of physics or some other
reference source for density values (the
handbook may list sucrose, which is the
chemist’s name for sugar).

Question 3. The average human body has a
specific gravity of 0.95. Should it float in
fresh water? How would it float differently in
sea water? What should happen when a
floating person takes a deep breath or exhales
deeply?

B. The freezing point of pure water is 32°F.
Adding impurities lowers the freezing-point
temperature. Usually ethylene glycol is added
as antifreeze to accomplish this. A table
showing mixture ratios for water and anti-
freeze to provide protection is often supplied
on the antifreeze container. If one wishes to
check the antifreeze content already in a
radiator, he can use a hydrometer and look up
the freezing point that corresponds to the
determined specific gravity. The cheapest
do-it-yourself hydrometers do not have a
continuous specific gravity scale. Instead,
they utilize four balls which have different
densities. Each one just floats when the
specific gravity of the solution matches that
of the ball. The number of balls which float
indicates the specific gravity, thus the freezing
point of the radiator fluid. Typically, the balls
are designed to float at concentrations of
antifreeze which produce freezing points of
+30, +15, zero, and - 15°F.

Pmix =

Using an automotive hydrometer, a grad-
uated cylinder, some ethylene glycol, and
water, determine the density of each of
the balls in the inexpensive hydrometer.
When a ball just floats, its density is
equal to the density of the antifreeze +
water mixture. The density of the mix-
ture then corresponds to the freezing
temperature indicated on the hydrom-
eter scale. To start put 50 cm® of water
into a 125-cm’” graduated cylinder. Add
ethylene glycol in 5-cm’ increments. In
the table at the back of the module,
record the volume of the solution. Test
after each increment of antifreeze to see
how many balls float. Note the mixture
when each ball floats.

The density of the liquid at any incre-
ment of antifreeze is given by:

total mass ~ Vy pw + Vp pp
total volume Vr

where:

Vw, the volume of water, was set at
50 cm’

Va, the volume of antifreeze, is in-
. 3.
creased in 5-cm” increments

pw = density of water = 1.0 g/cm3

Pa = density of antifreeze =
1.125 g/em®

Calculate solution density (and ball den-
sity) when each ball just barely floats.

Compare the mixture found experi-
mentally for each degree of protection
with the antifreeze-to-water ratio sug-
gested on a container of ethylene glycol
permanent antifreeze for the same pro-
tection.

13
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SUMMARY

A liquid conforms to the shape of its con-
tainer.

Liquids are nearly incompressible.

Mass density p 1s the ratio of mass M to
volume V for a substance:

M

P='I7

Weight density D is the ratio of weight W to
volume V for a substance:

D=

<

Specific gravity S. G. is a dimensionless number:

_ density of a substance

S.G. -
density of water

PROBLEMS

If you understand the module so far,
then you should be able to do the following
problems. Be sure to show the correct units
with each numerical answer.

A block of wood weighs 160 1b and has
dimensions of 2 ft X 2 ft X 1 ft. Calcu-
late the weight density of the block in
b/ft>.

What is the volume of 500 g of gold?

A vat of maple syrup contains 1600
gallons of syrup. Calculate the weight of
the syrup in the vat. (7.5gal = 1 ft3)

The specific gravity of a metal alloy is
2.62. Calculate the mass density and the
weight density of the alloy.

The specific gravity of an oil sample is
0.85. What is the volume of 40,000 Ib of
this oil?

A jet plane loads 14,000 1b of fuel,
specific gravity 0.9. How many gallons
of fuel does the plane load? (7.5 gal =
1 £t%)

A government agent confiscates 6 kg of a
smuggled narcotic. If the substance just
fills a S-liter container, what is its den-
sity in g/em?? (1 liter = 10° c¢m?)



SECTION B

PRESSURE

Pressure is a ratio of force to area. In
liquids it is usually easier and more meaning-
ful to measure pressures than forces. If a force
F acts over an area A and is perpendicular
(normal) to the surface, the pressure is:

=— 4)

Example 4. A cylinder, whose base has an
area of 5 inz, contains 10 1b of water. What is
the pressure on the bottom due to the water?

Solution. We can apply the definition of
pressure, noting that the force is simply the
weight of the water and that it is normal to
the bottom of the cylinder.

=101b/5 in® = 2 1b/in?

Example 5. An automobile radiator cap is
designed to release steam if the pressure
reaches 5 lb/inz. At that pressure, how much
force acts on the cap if it is sealing an opening
1.5 in in diameter?

Solution.

Therefore,
F=PA

Since A = nd” /4, where d is the diameter of
the circle,

2

d
F=(5 1b/in2)14—

- %(5 Ib/in?) (1.5 in)?

=8.81b

Example 6. A stack of books whose total
mass is 10 kg rests on a table top. The bottom
book has an area of 300 cm®. Determine the
pressure in N/m2 exerted on the table.

Solution. The force is the weight of the
object:

W=F=Mg
F=(10kg) (9.8 m/s?)
=98 kg-m/s® = 98 N

F 98 N
P=——=— _ — 2
A 300 cm? 33 N/em

However, we want to calculate the pressure in

2 -
N/m”, so we must convert from square centi-
meters to square meters.

Ilm= 10> cm
1 m? =(10% cm)? = 10% cm?

33N 10* cm?
P= 7 X 3
cm m

= 3300 N/m?

Although one commonly encounters pressure
specified in English units (lb/in2 ), the SI unit
is the metric unit (N/m2 ), which is called a
Pascal (Pa).

N
2
m

1 =1Pa
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EXPERIMENT B-1. Pressure Dependence on Depth

Pressure in a liquid is related to the
depth below the surface, as any swimmer will
readily tell you. This fact is the design basis of
many water distribution systems. Towns and
villages pump their water up into high water
towers to assurc adequate pressure every-
where in their area. In cities, tall buildings
have their own water towers raised on plat-
forms above the roof. Why is that done?
Often, automatic fire sprinkler systems have a
separate water tank on the roof to assure
adequate pressure on all floors. Nuclear power
reactors have high tanks of water to assure
emergency reactor core cooling should an
accident occur. You may have observed that
in your own house the pressure upstairs is less
than the pressure downstairs.

In this experiment you will use a simu-
lated water stand-pipe to determine the pres-
sure as a function of depth for the water in
the pipe.

Figure 12. A stand-pipe simulator.

In many engineering investigations it is
too difficult or too expensive to build and
test a real system. The engineer may build a
model or a simulator. In this context, a model
means a smaller, scaled replica of the real
system. By a simulator one means a small
system that will behave similarly to the real
system even if it is not an exactly scaled-down
copy. This experiment will be done using a
simple simulation of a building water system,
as shown in Figure 12, to show you the
effects of pressure on depth. You might
consider each port to correspond to a floor. A
real system would be about twelve times as
high, or approximately 60 ft tall. Real pres-
sures would be about twelve times what you
will measure.

Here you will measure the pressure as a
function of depth by employing the spring
push balance as shown in Figures 13 and 14.
Be sure the stand-pipe is full to the top before
beginning.

PUSHER PLATE
‘——BALANCE

T

| I ]
——DIAPHRAGM

Figure 13.

1. Carefully measure the force necessary to
flatten the flexible diaphragm at each
surface and record your answers in the
worksheet at the end of the module. It
helps to have one person align the pusher
plate while another person reads the
compression balance.

Note that the balance is calibrated in
mass units (grams). To convert to force
units (dynes) one should multiply by g,
the acceleration due to gravity. Thus

_F_Ms
A 4

P



I CORRECT TECHNIQUE
i
| l JUST FLATTEN

INCORRECT TECHNIQUE

HHHHH —

FORCE TOO GREAT
Figure 14.

where

g =980 cm/s>
2. The area of the pusher plate is deter-

mined by measuring the diameter and
using the formula:

where

A = area of a circle
d = diameter
T =3.14

Calculate the pressure P for each port.
Measure and record the distance 4 to the
center of each port from the water
surface.

Plot on graph paper P versus 4. Use a full
page. Draw the straight line which best
fits your data points. (If you don’t know
how, ask your instructor for help.) If
any point seems very far from the line,
recheck your data. The pusher plate may
have been hitting the metal wall of the
port.

The slope of a line on a graph is the rise
(the vertical distance between two
points) divided by the run (the hori-
zontal distance between the same two
points). By taking measurements from
your graph between any two points on
the line (pressures P, and P, and depths
h, and h, respectively) find the slope of
the graph. The worksheet at the back of
the module shows you how to do this
step by step. You will use this value
later,




PRESSURE VERSUS DEPTH
We will now develop an expression for

the way pressure varies with depth and see if
it corresponds to the results of your experi-
ment. Figure 15 represents a column of fluid
of depth 4 and cross-sectional area A.
The volume of the fluid is

V=Ah
The weight of the fluid is

W=DV (5
The column of fluid rests on an area A, so the

pressure at the base of the column due to the
fluid is

P=Dh (6)

In words, the pressure beneath the sur-
face of a liquid is equal to the product of

s Ay,
Poor ~
P >\
| A
—

Figure 15.

weight density (D) and depth (%). D is the
slope of the P versus h graph. How does the
slope you measured compare with the
accepted value of the weight density of water
D=1 g/cm3 )? Since D = pg, we can write

P =pgh @)

When using either Equation (6) or Equa-
tion (7), one must be careful to be consistent
with the units. The following examples illus-
trate this point.

Example 7. Maple syrup has a density of
1.4 g/cma. Find the pressure in a large tank of
syrup at a depth of 1 m below the surface.

Solution. Because mass density is specified,
Equation (7) is appropriate. A consistent set
of units is obtained if the depth is expressed
in centimeters.

P=pgh
= (1.5 g/cm®) (980 cm/s*) (100 cm)

2
«CIM/S
— 1.47 x 10° &S/
cm

d
=1.47x 10° 25
cm

Example 8. Determine the pressure on a diver
when he is 30 ft below the surface of a fresh
water lake.

Solution. The weight density of water is 62.4
Ib/ft>.

P=Dh
= (62.4 1b/ft>) (30 ft)
= 1870 1b/ft?
SOME FACTS ABOUT PRESSURE
1. An interesting feature of Equations (6)

and (7) is that there is nothing in either
equation to specify the shape (geometry)



of the liquid column. In fact, if a series
of differently shaped containers are all
attached to pressure gauges and filled to
the same level with the same liquid, the
pressures are seen to be the same. That
is, the pressure at any given depth is the
same no matter what the shape of the
“container.

2. In addition, the pressure does not
depend upon the orientation of a solid
surface on which it might act. No matter
which way the surface is tilted, the
pressure at a given depth is the same.

3. Finally, no forces act in a direction
parallel to a solid surface which is under
the surface of a stationary liquid. That
is, the forces produced by pressure are
always perpendicular (normal) to the
surface.

TALL BUILDINGS

In Experiment B-1 you probably noticed
that the pressure at the lowest port was about
four times the pressure at the highest port.
Does this agree with your own experience in
tall buildings? If real buildings worked exactly
this way, some very high pressures would be
found on the lower floors. For example, the
Empire State Building is 102 stories (about
1100 ft) high. If the water pressure at the
upper observation deck was 15 1b/in?, then in
the lobby the pressure would be about
1530 1b/in’ ! Imagine how thick the pipe walls
might have to be to contain that. If the water
pressure at the top floor is adequate, engi-
neers install a device, called a pressure regu-
lator, at each floor. It keeps the pressure from
getting too high at that floor. A two- or
three-story house doesn’t usually have pres-
sure regulators, so you can often observe
pressure differences there.

Question 4. The water pressure in the top
floor of a factory is 60 Ib/in®. How high
above the floor must the top of the water
tower be to produce this pressure?

ARCHIMEDES’ PRINCIPLE

We have spent some time discussing the
properties of liquids—now we shall concern
ourselves with the behavior of objects that are
placed in liquids, i.e., things that sink or float.

Why does a 40,000-ton steel ship float?
Exactly how big must the diving tanks on a
research submarine be so that it can explore
the bottom of the ocean? Today many river
barges are made from poured concrete.
Doesn’t concrete sink when you throw it in
water? Why does a heavy rock that you lift
from the bottom of a lake feel heavier as it
clears the water surface? The ball float in a
toilet tank and the float in your car’s carbu-
retor experience forces that keep them at the
surface of a liquid. What causes those forces?

In Experiment A-2 did you observe that
a hydrometer that floats at some level in one
liquid floats deeper in a second liquid and
perhaps sinks to the bottom in a third liquid?
In some way, the density of the liquid
determines whether an object will float or
sink. The Greek philosopher Archimedes had
a clear understanding of the buoyancy (float-
ability) of objects over 2000 years ago. His
discoveries have influenced technology for 20
centuries. The following is a statement of
Archimedes’ Principle:

An object placed in a liquid experiences
an upward force equal to the weight of
the liquid it displaces.

An illustration of this is shown in Figure
16. Each cubic foot of liquid that is displaced
causes the metal cylinder to apparently “lose”
50 Ib of weight. The buoyant force is equal to
the weight of the displaced fluid. (This liquid
isn’t water, which weighs 62.4 1b/ft°.)

When the metal cylinder is suspended
this way, the spring balance reads its apparent
weight. The apparent weight is the true
weight minus the buoyant force exerted by
the liquid. By Archimedes’ Principle, that
buoyant force is equal to the weight of the
displaced liquid.

Figure 16 shows the displaced liquid
spilling out of the full container as the metal
cylinder islowered into it. Note, however, that
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=950 Ib

=000 Ib

| ft3 SUBMERGED

| ft> OF DISPLACED
LIQUID

Figure 16.

the displaced fluid doesn’t have to leave the
container in order for the cylinder to experi-
ence a buoyant force. “Displaced” means that
the liquid is moved aside to make room for the
object. If the cylinder were lowered into a
partially full container, the displaced liquid
would just rise in the container.

If a 125-1b piece of wood floats on the
surface of a lake, it displaces 2 ft> (125 Ib) of
water. Its apparent weight is zero. In general,
an object floats if it displaces a weight of
liquid equal to its own weight. An additional
downward force is necessary to completely
submerge a floating object.

The size of a large ship is usually
characterized by its deadweight displacement,
in tons. A 125,000-ton displacement oil
tanker displaces 125,000 tons of sea water
when it is fully loaded. The tanker floats
when loaded because it weighs the same as do
125,000 tons of sea water.

DERIVATION OF ARCHIMEDES’
PRINCIPLE

We can show that the upward or buoy-
ant force on a submerged object is equal to
the weight of the displaced liquid by analyz-
ing Figure 17. Recall that a liquid exerts a
normal (perpendicular) force on any surface
in the liquid.

Figure 17.

When a cylinder, such as the one in
Figure 17, is submerged in a liquid, the
pressure on the top surface is:

F,
P=Dh1 =
A

where D is the weight density, 4 is the
cross-sectional area of the cylinder, and F, is
the total force on the top surface. The force
on the top of the submerged cylinder is thus

Fl :DhlA

Similarly, the force on the bottom is F, =
Dh,A. Since h, is greater than h;, F, is
greater than F,. There are also forces acting
on the sides of the cylinder, but for each such
force on one side there is an oppositely
directed matching force on the other side.
Thus all the horizontal forces cancel out and
the net force on the cylinder is

Fg =F, - F,
= DA (hy - hy) = DAAK

The buoyant force, Fg, is the net force
of the liquid on the object. The volume of the
displaced fluid is V = AAh. Therefore,
FB = DV, which is the weight of the dis-
placed fluid. We have derived Archimedes’
Principle for a solid whose volume is easy to
calculate. The same analysis can be applied to
other shapes as well, although it is more
difficult to analyze complicated shapes.



The shut-off valve in a toilet tank illus-
trates an application of Archimedes’ Principle.
It relies on the buoyant force on a floating
ball to shut off the vaive.

Example 9. A cubic foot of iron is totally
immersed in water.

a. Determine the buoyant force on the
iron.

b. Determine the apparent weight of the
iron.

Solution. a. Archimedes’ Principle states that
the buoyant force is equal to the weight of
the displaced fluid. One cubic foot of water is
displaced. It weighs 62.4 Ib. Therefore, the
buoyant force is 62.4 1b.

b. The apparent weight is the true
weight minus the buoyant force. The true
weight is the product of the weight density
of the iron and the volume.

W=DV
= (494 1b/ft®) (1 ft)
= 494 Ib

494 b -

Apparent weight = 624 Ib =

431.6 Ib.

Example 10. A wood float has a density of
600 kg/m3 . Its mass is 2 kg.

a. Determine how much of its volume is
submerged when it floats in water.

b. Determine the force required to pull
it below the surface.

Solution. a. The float will sink until it dis-

places an amount of water equal to its own
weight, W = Mg. Therefore, the mass of the
displaced water is 2 kg. The volume of dis-
placed water can be determined from the
mass density of water.

M 2kg 2000
T op 1 g/cm3 1 g/cm3
= 2000 cm’
=2X10°m®

b. The force required to pull the float
below the surface is the difference between
the buoyant force on the completely sub-
merged float and the true weight of the float.
First, using the density of the wood, deter-
mine the volume of the wood block, which is
also the volume of water displaced when the
wood is completely submerged.

yM__ZX __33%10°m’

o) "~ 600 kg/m

The buoyant force equals the weight of the
displaced water.

Fg = pgV
= (10> kg/m>®) X (9.8 m/s*) X
(3.3 X 10°m?)

= 323 N

The weight of the float, Mg, is 19.6 N.
Subtracting, the required force is 12.7 N.

Now you should be ready for Experi-
ment B-2, an experiment which uses
Archimedes’ Principle in the determination of
densities.
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EXPERIMENT B-2. Measuring Density

The simplest way to determine the densi-
ty of an object is to measure its mass and
volume. One can calculate the volume if the
object has a regular shape, as do a sphere, a
cube, and a cylinder. The density is then
calculated by taking the ratio of the mass to
the volume:

p=M|V

If the object is irregularly shaped, it may
be difficult or impossible to find the volume
by measuring its dimensions.

A. Finding Density from Displaced Volume

Here is a method that can be used with
small objects which are irregularly shaped.

1. Determine the mass of the object with a
gram balance.

2. Partially fill a graduated cylinder with
water and record the volume of water in
cubic centimeters.

3. Place the object in the cylinder. If it is
more dense than the water, it will sink
and displace a volume of water equal to
its own volume so that the water rises in
the cylinder. If it is less dense than
water, you will have to hold it just under

4
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Figure 18.

the water with a stiff wire which does
not displace much water.

4. Record the volume (water plus object) in
the graduated cylinder. The difference
between the two readings of the water
level is the volume of the object.

5. Take the mass-to-volume ratio to obtain
the density, px, for each object.

Perform this experiment for each of the
objects provided by your instructor.

B. A More Accurate Measure of Density

Your measurement of mass is quite
accurate because the balance is a sensitive
device. You should be able to determine an
object’s mass to the nearest 0.1 g. However,
your measurement of volume using the gradu-
ated cylinder is a relatively crude measure-
ment; the graduated cylinder does not give a
precise measure of volume. Thus, using this
method to measure volume isn’t a very good
way to determine density. It is better to
measure volume more accurately. One way to
do this is by using the gram balance.

Using Archimedes’ Principle, a balance
can be used as illustrated in Figures 18
and 19.

| R L R L L RN
N 4

Figure 19.



With the balance supported over the
table, hang the object in question from
the balance arm, as shown in Figure 18,
and find its mass in air, M.

Now suspend the object from the bal-
ance arm so that it is submerged in a
beaker of water, as in Figure 19. Be
careful that it doesn’t touch the sides.
Record the apparent mass in water, My .

The difference between these two values
(Map - My) is related to the apparent
loss in weight, which is in turn equal to
the buoyant force exerted by the water.
By Archimedes’ Principle, that force is
just equal to the weight of the water
displaced. Thus, the weight of the water
displaced is just the weight of (MA -
My), in grams (i.e., Myaper = Mo -
My). How many cubic centimeters of
water are there in (Mp - Mw) grams of
water? Use the density relationship and
the density of water (1 g/em®):

Mwater - (Ma - My) _

PWater = =1 g/0m3

vV V
Or:
V=(Mp - My)(1 glem®)

Thus, the volume (in cm3) of the object
is numerically equal to the apparent loss
in mass represented by (Ma - My). By
making two readings of mass you have
obtained the volume of the object to a
much higher accuracy than by using the
graduated cylinder. Using the expression
above for the volume, you can now
compute the density, px, of the object:

) _Mp _ Ma
OV (Ma - Mw)/(1 g/em®)
Or:
=—2 X (1
P =0 v (1 g/cm™)

3.

Using this method, repeat the determi-
nation of pyx for each of the objects
previously used.

C. Objects Which Float

If you wish to use this latter method to

find the density of an object which floats, you
must use a sinker to pull it under the water.

1.

Measure the mass in air, Mp, of the
object by hanging it from the balance
arm as before.

Suspend a heavy metal sinker from the
object, as shown in Figure 20.

Submerge the sinker, as in Figure 20,
and measure and record the apparent
mass of the object in air plus the sinker
in the water (Ma + Msw).

[T T T T T
[ 4

OBJECT

LEAD
SINKER

Figure 20.

Let the sinker pull the object down
beneath the surface of the water. Be sure
the sinker doesn’t touch bottom. Now
measure the apparent mass of the object
and the sinker, with both in the water
(Mw + Msw).

The difference in these values is:
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(Mp +Mgw) - My + Msw) =My - My)
Thus, the volume is:
V= (Ma - Mw)/(1 g/em®)
= [(Ma + Msw) - (Mw + Msw))/(1 g/em®)
Finally, the density of the object is:

Ma (1 g/em®)
V. [((MA +Msw)- My + Mgw)]

_Ma _

Px

5. Calculate the densities of the objects
which float.

The use of a gram balance to determine
the volume of an object demonstrates two
practical technical principles. First, there is
often more than one way to make a satis-
factory measurement. Second, different mea-
suring techniques have different accuracies,
which usually depend upon the instrument
used.

Archimedes developed his principle in
order to solve a very practical technical
problem. The king wished to purchase a new
gold crown. Before he paid the craftsman, he
wanted to be sure the crown was pure gold.
He asked Archimedes to determine if the
crown was pure gold or a mixture of metals.
Archimedes measured the buoyant force on
the crown in water to provide the answer.
Non-destructive testing is a widely used engi-

neering technique. Surely, this is one of the
earliest examples recorded.

QUESTIONS FOR EXPERIMENT B-2

1. A partially filled fish tank rests on a
balance. A fish is put into the tank. The
fish doesn’t touch the sides. Does the
balance indicate more weight? Explain
your answer.

2. In Experiment B-2 we ignored the buoy-
ant force of air on the objects. Show
that this was a reasonable procedure to
follow. (Density of air at standard con-
ditions = .00129 g/cm3)

3. Suggest a method other than using a
hydrometer to measure the density of an
unknown liquid. Write out a detailed
procedure. Obtain a liquid sample and
determine its density and specific gravi-
ty. Check your answer with a hydrom-
eter. List the most important sources of
error carefully.

4. A partially inflated rubber inner tube is
just barely floating on the surface of a
pond. It is pulled down 10ft by a
swimmer and released. Will it rise or
sink? Explain.

5. A 1ft’ block of cement has an apparent
weight of 330 Ib when it is submerged in
a lake. What is the buoyant force on it?



ATMOSPHERIC PRESSURE

You have seen that pressure in a liquid
depends on both its density and the depth.
The same is true for gases. We live at the
bottom of an “ocean” of air, and the pressure
of the atmosphere is significant. However, the
density of the atmosphere varies with alti-
tude, so Equation (7) can’t be used to
compute air pressure. Figure 21 shows that a
column of air 1 ft? in cross-sectional area, and
extending to the top of the atmosphere, weighs
over a ton! The pressure at the bottom of this
column can be calculated.

21201b  21201b
1 ft? 144 in*

P (atmosphere) = Pp =

P = 14.7 1b/in*> = 15 Ib/in’

-+-J

2120 POUNDS
Figure 21.

You have probably encountered this value
before. A column of water would have to be
nearly 34ft (10 m) high and a column of
mercury would need to be 2% ft (76 cm) high

to exert the same pressure. As you know from
weather forecasts, the actual pressure exerted
by the atmosphere varies considerably. This
pressure is a typical value at sea level and is
called a standard atmosphere. Atmospheric
pressure is often expressed in terms of the
height of a column of liquid that produces the
same pressure. A mercury barometer, like that
in Figure 22, measures atmospheric pressure
in terms of the height of a column of mercury
which is balanced by air pressure.

Figure 22.

Since the air pressure decreases as one
ascends above sea level, aneroid barometers,
calibrated for altitude, are used as altimeters
in airplanes. You will study both mercury and
aneroid barometers in Section C.

There are a great many units of pressure
currently in use. Table III gives a standard
atmosphere (1 atm) in terms of several of
them.

Table II1.
A Standard Atmosphere in
Several Systems of Units

1 atm = 14.7 Ib/in®
= 760 torr
(formerly millimeters of mercury)
= 29.9 inches of mercury
=1.013 X 10® dyn/cm’
=1.013 X 10° Pa (1 Pa = 1 N/m*)
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GAUGE PRESSURE

Does air pressure have anything to do
with the pressure in liquids? The answer is yes
and no. Atmospheric pressure acts on any
exposed surface of a liquid. At a depth A
below the liquid surface, the total pressure P
is the sum of atmospheric pressure and the
pressure due to the liquid. The pressure due
to the liquid is Dh. The total pressure is then

P=Dh+ P, =hD + 14.7 Ib/in®

This is usually called an absolute pressure.
Usually liquid pressure problems require only
the pressure due to the liquid. Such pressures
are called gauge pressures, because most
gauges read the pressure above atmospheric
pressure. For example, a tire pressure gauge
reads gauge pressure; inflating a tire ‘“to
30 1b” means raising its pressure to 30 1b/in>
above atmospheric pressure.

Note that in previous sections of the
module we have been referring to gauge
pressure (Dh) most of the time. How would
the inclusion of atmospheric pressure affect
the answers of the earlier examples?

The following example should help to
clarify the difference between gauge pressure
and absolute pressure.

Example 11. Suppose you have two pressure
gauges, one of which reads absolute pressure
and the other gauge pressure. What is the
reading on each gauge at the surface of a lake
and at a depth of 15 ft?

Solution. At the surface the absolute pressure
is one atmosphere, or 14.7 lb/inz. Therefore
at the surface

P=P, =14.7 b/in®
PGauge =0

The gauge pressure (pressure due to the
water) at a depth of 15 ft can readily be
determined. Adding one atmosphere to it
gives the absolute pressure. Thus at 15 ft

PGauge = Dh = (62.4 Ib/ft>) X (15 ft)
= 93.6 Ib/ft’

—_ 2.2
Then = 6.5 Ib/in

P=14.7 bfin* + 6.5 Ib/in®

= 21.2 Ib/in?

EXPERIMENT B-3. A Closed Hydraulic
System

In this experiment you will investigate
the properties of a two-piston, closed hydrau-
lic system, using two medical syringes which
are coupled together. In a hydraulic system,
matter is conserved (if there isn’t a leak).
Since a liquid is incompressible, the total
volume of liquid in a closed system also
remains constant. This may seem obvious, but
if the system were pneumatic (air-operated),
the enclosed volume would change, since air is
easily compressed.

1. Use the syringes as a two-piston system,
as shown in Figure 23. Demonstrate that
matter is conserved as oil is transferred
from one cylinder to the other. Measure
the diameters of the two syringe
plungers. Note that the syringes are
marked for volume displacement in cc
(cm3 ).

2. Using a range of slotted weights and the
two-syringe hydraulic system, hang
weights up to 600 g so that the force
acts on the smaller piston. Using a spring
push balance to measure the output
force, determine the output force after
each weight is applied to the small-
diameter cylinder. Record the output
force, then gently tap the mounting
board to break the frictional forces
impeding the motion of the pistons.
(This frictional force is termed the
breakaway force in hydraulic technol-
ogy.) Record the new value of the
output force.
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Figure 23. Two syringes coupled together to form a two-piston hydraulic system.

3.  Compute the pressure at the face of each
plunger.

4. Calculate the ratio of output force (after
tapping) to input force for each weight.

CLOSED SYSTEMS—PASCAL’S LAW

While many characteristics of liquids can
be explained by studying free-standing liquids
in open containers, at least one important
property relates to liquids in closed systems—
systems which are not open to the atmo-
sphere. Automobile brake systems and
hydraulic jacks are examples of closed
systems. The behavior of closed systems was
studied by Pascal, an eighteenth century
scientist. His conclusion is known as Pascal’s
Law:

In a closed system filled with a fluid,
pressure applied to the fluid in one part
is transmitted equally to all parts of the
system.

Frictional effects may have partially
masked this effect in Experiment B-3, but
your results for the pressures on the two
plungers should have been close.

The hydraulic press and hydraulic jack
are devices which work through the applica-
tion of Pascal’s Law. A discussion of these
devices should lead to an understanding of
this important principle of physics. Figure 24
shows a simplified version of the hydraulic
jack. The basic parts are:

a. The enclosed fluid—usually oil.

b. A large piston which supports the
load.

¢. A small piston which applies the
input force.

Let’s start with the system in balance.
(Pressure differences due to differences in
height are small compared to the total pres-
sure in the jack; therefore, we will ignore
them.) The applied force on the small piston
produces a pressure given by

po b
A,

Pascal’s Law states that this same pressure will
be transmitted to the large piston.

Figure 24. When the large piston moves up 1 in, the small piston must move down 20 in, and 1 1b applied
to the small piston produces 20 1b of force on the large one.
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_5
A,

P

Thus the force on the large piston is

F, =PA,
Fy 4,
=— A, =F, —
4,7 a4,
Or
F, A
—2="2 (8)
F, A4,
For circular pistons, A = (%)wd2 and
2
F, _md; /4
F, wd;/4
Or
F, d;
2=2 ©)
F, d;

In other words, the force is multiplied by the
ratio of the squares of the diameters. It
sounds great to multiply force, but you may
be sure there is a catch somewhere. You can’t
get something for nothing. Let’s look at S, ,
the distance the small piston must move in
order to raise the large piston up a distance
S,. To move the large piston up S, requires a
volume of oil given by

V = (Y%)nds S,

Because the oil is incompressible, this must be
equal to the volume of oil moved by the small
piston:

V=(%)nd;S, = (Y%)nd:S,

Therefore,
dis, =d.S,
Or

(10)

Thus, the smaller piston moves a longer
distance than the larger one. In fact, in this
ideal case the ratio of distances moved is just
the ratio of output to input forces. For
example, in the system of Figure 24 the small
piston moves 20 times as far as the large
piston and the force is multiplied 20 times.
Rewriting Equation (10) shows that the prod-
uct of force times distance is the same for the
two pistons:
F. S8, =F,8, (11a)
The product of a force and the distance
through which the force is applied is the
physical definition of the term work. (This is
a very special use of the term, quite different
from our everyday meaning. A displacement
parallel to the direction of the applied force
must occur if physical work is to be done.)
Thus, Equation (1l1a) means that work-in
equals work-out ideally:
W, =W, (11b)
In other words, the hydraulic jack
doesn’t reduce the amount of work one must
do; it reduces the force needed but increases
the distance through which it must be
applied. If there is no friction (as we assumed
in the above derivation), the work output
equals the work input.

Experience tells you that hydraulic jacks
don’t raise a load with a single stroke of the
small piston. Real jacks use repeated strokes
of the small piston to do this lifting; Figure
25 shows this refinement of the jack. Sections
A and B of the jack are the same as those
shown in Figure 24. Section C is a reservoir of
oil at atmospheric pressure. D and E are
one-way valves. If the pressure on the right of
valve D is greater than that on the left, the
ball closes the valve. Conversely, if the pres-
sure on the left is greater, the ball is forced
out of the cup and the valve opens. Thus the
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Figure 25. A hydraulic jack.

liquid will flow only from left to right
through this valve. Valve E works exactly the
same way.

When the piston in the small cylinder is
pushed downward, valve D is forced shut and
valve E is opened. This admits liquid to the
large cylinder and causes the load to rise. If
the small piston is raised, the valves reverse
positions and liquid is drawn from the reser-
voir, refilling the cylinder at B. Add a lever
(handle) to B and you have a hydraulic jack.
(How do you get the load down?)

In garages and gas stations many hydrau-
lic lifts employ a combination of a gas (air)
and a liquid (oil). Multiple use is made of the
air compressor, which also inflates tires, runs
pneumatic tools, and helps to signal incoming
business. In the automobile lift, the direct
pressure from the small piston is replaced by
air pressure from the compressor. For exam-
ple, in an automobile lift, if the compressor
output is 40 lb/in2 , and the lift piston is 12 in
in diameter (113 in’ area), the lift can support
4520 1b. See Figure 26.

FRICTION

We started the discussion of the hydrau-
lic jack by neglecting friction; now let’s put it
back. With friction in the system, some work
is lost and the output work W, no longer
equals the input work W,. We define the
efficiency E:

W,
E W, X 100%
This is the percentage of the work input
which is converted into useful output.

Efficiency is often defined in terms of
mechanical advantages. The actual mechanical
advantage (AMA) includes frictional effects,
and it is expressed in terms of the applied
force F, and the actual output force 4 F,
(load):

F
AMA =2
F,

This is just the ratio you computed in
Experiment B-3.

(12)
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The ideal mechanical advantage (IMA)
ignores friction, and is usually expressed in
terms of distances or dimensions. It is the
value that F,/F, would have in the absence
of friction. Since Equation (10) was derived
on the basis of no friction, we can use it to
determine the ideal mechanical advantage for
the jack:

dg ‘Sl
M —_—— —1
IMA F, (1dea1)— 1 3 (13)

Now the efficiency can be expressed in terms
of mechanical advantages:

W, F35,
E=—%X100% = X 100
w ®=Fs, <1007

1 191

Rearranging this gives:

F,[F,

E=
Sy /S,

X 100%

Or

AMA
E= A X 100%

Example 12. A hydraulic jack has a small-
piston diameter of 1in and a large-piston
diameter of 9in. It is found that, to lift a
2000-1b load, a force of 30 1b must be applied
to the small piston. Determine

a.  The ideal mechanical advantage.

b. The actual mechanical advantage.

c.  The efficiency of the jack.

Solution.
a.
g =820 _
dl (1 in )
b.
F, 2000 lb
AMA =— = ———=
F, 301b



c. The efficiency is the ratio:

AMA 67
E=____ & —

MA X 100% 31 X 100%
E =82%

If this jack were operated with a levered
handle which has a mechanical advantage of
10 (lever arms in the ratio 10:1), the applied
force on the end of the handle would be only
3 Ib. (Mechanical pivots are almost frictionless
if good bearings are used.) Even if the friction
were so high that the efficiency of the
mechanical lever was only 50%, a 6-lb force
input would produce the required 30 Ib
needed to operate the hydraulic lift. With this
combination of mechanical and hydraulic
force multiplication, even a small child could
lift a 1-ton load.

Power steering units for automobiles,
large hydraulic hoists, cherry-picker cranes,
and dump-truck hoists are essentially like a
hydraulic jack in which the lever and small
piston are replaced by a pump which forces
liquid into the large cylinder. Technologists
have certainly put Pascal’s Law to good use.
One example is shown in Figure 27.

Figure 27. Hydraulic systems do much of the heavy
work in our technological world.
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SUMMARY

Pressure is the ratio of the normal force to the
area over which the force acts and is usually
expressed in Pa (N/m?), Ib/in®, or dyn/cm”.

The pressure at any point a ‘distance h below
the surface of a liquid is equal to the product
of weight density (D) and depth (k).

P=Dh = pgh

Archimedes’ Principle states that, when an
object is placed in a liquid, it is buoyed up by
a force equal to the weight of the displaced
liquid.

The absolute pressure is equal to the gauge
pressure plus the atmospheric pressure.

P=PG + Pj

Pascal’s Law states that the pressure applied
to an enclosed system is transmitted equally
to all parts of the system.

The hydraulic jack and the hydraulic press
both operate according to Pascal’s Law. The
actual mechanical advantage of these devices
is:

AMA __.fl _ Output force
F, Input force

The ideal mechanical advantage of these
devices is:

2

IMA =-d—22 where d = piston diameter
1

The efficiency is:

Work out AMA
=— X 100% = —=
Work in 00% IMA X 100%
PROBLEMS

1. A submarine’s hull can withstand a water
pressure of 20 ton/ftz. What is its safe
diving limit? (The weight density of sea
water is about 64 1b/ft>.)

An ice cube floats in a glass brim full of
water. When the ice cube melts, does the
glass overflow? State a precise reason for
your answer. Perform a simple experi-
ment to prove your results.

Gin has a density of about 0.90 (depend-
ing on the proof rating). Will an ice cube
float higher or lower in a glass of gin
than in a glass of water? Will the ice cube
float in pure alcohol (200 proof)? Test
your answers on a few friends.

A student reading a physics text is
floating on a raft in her swimming pool.
In frustration she throws her text into
the pool from the raft. Does the water
level rise in the pool? Explain your
answer.

Using your data from Experiment A-1,
calculate the actual mechanical advan-
tage of the automotive jack.

The small piston of a hydraulic jack has
a cross-sectional area of 2in”. The large
piston has cross-sectional area of 40 in®.
What is the ideal mechanical advantage
of this jack? How many 4-in strokes of
the small piston are required to raise the
load on the large cylinder 100 in?

The surface of a vinyl floor covering has
a breaking strength of 250 Ib/in’. Will a
105-1b girl wearing shoes having heels
with an area of 0.35in® break the
surface? State clearly any assumptions
that you make. (In the days of *“‘spike”
heels, this was a serious problem in many
public buildings.)

A block of aluminum 2in X 6in X 1 in
floats on its large face in a pool of
mercury.

a. What pressure does the weight of
the aluminum exert on the
mercury?

b. What is the buoyant force on the
aluminum?



10.

11.

12

13.

14.

¢. How much mercury is displaced by
the aluminum?

A hydraulic cylinder whose diameter is
2.5cm is coupled to a cylinder of
diameter 12.5 cm. What force would be
required at the smaller cylinder to pro-
vide an output force of 1100 1b if the
system operates with 88% efficiency?

A window on a spacecraft has a diameter
of 12 in. The spacecraft is pressurized at
0.8 atm. What pressure must the window
glass withstand in 1b/in?? What total
force is exerted on the window?

The face-mask window of a skin diver
has an area of 100in”. The pressure
inside is 1 atm. At what depth will the
water pressure be ten times the inside
pressure? What will the total force be on
the outside of the window?

From your answers to questions 10 and
11, can you explain why it is easier to go
into outer space than to go to the
bottom of the ocean (46,000 ft)?

A naval depth charge is set to go off
when its pressure sensor detects
150 lb/in2 pressure. If the density of sea
water is 64 Ib/ft’, at what depth will the
charge explode?

A Polaris submarine crew wishes to
launch a missile from a depth of 80 ft.

IS.

16.

17.

18.

To what pressure must the missile firing
tube be pressurized to open the protec-
tive door?

An Eskimo tries to sneak up on a seal by
stepping onto a circular ice floe 3 ft in
diameter and 18in thick. The floe is in
salt water (D = 64 Ib/ft>). If the Eskimo
weighs 140 1b, and the specific gravity of
salt ice is 0.90, will the ice floe support
him?

A 23-1b bicycle has a 137-1b rider on it.
The weight is evenly distributed to both
wheels. If the pressure in the tires is
80 lb/inz, how much tire area contacts
the road?

As the eye of a tornado passes over the
roof of a house, the pressure outside the
roof suddenly drops to 27 in of mercury.
If the windows and doors are all closed,
the inside pressure does not change
rapidly. Calculate the pressure differ-
ential in Ib/in® if the inside pressure re-
mains at 30 in of mercury. If the house is
30 ft X 50 ft, calculate the total force
lifting the roof as the tornado passes.
What should one do with the windows
when one hears a tornado warning for
the area?

A boy weighs 185 Ib. When he dives into
a pool, he displaces 22 gal of water. His
110-1b girlfriend displaces 13 gal. Whose
body is more dense?
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SECTION C-1

FLUIDS IN MOTION: HYDRODYNAMICS

The study of the behavior of fluids in
motion is called Aydrodynamics. Fluids in
motion display properties that differ dramat-
ically from fluids at rest.

One of these properties is frictional drag.
Real liquids such as water, beer, and oil
experience a frictional force, called drag, as
they flow through pipes or over surfaces. The
result is that the force exerted by a moving
liquid on the walls of the pipe has a compo-
nent parallel to the pipe. Static fluids always
exert forces perpendicular (normal) to the
walls of the container. The frictional effect
causes a loss of mechanical energy and a loss
of pressure as the fluid flows through the

pipe. This effect is easily seen in common
garden hoses. The longer the hose, the less the
pressure at the end of the hose.

A detailed study of friction is beyond
the scope of this module, and the following
discussions assume that the effect can be
ignored. Frictional effects only cause a change
in numerical values; they do not change the
main features of the fluid behavior.

A second difference between static fluids
and flowing fluids is illustrated by Experi-
ment C-1. Differences in the velocity of a
fluid produce differences in pressure in the
fluid. After the experiment, an optional sub-
section explains why this pressure difference
exists, and derives an equation which is used
to compute the difference.



EXPERIMENT C-1. The Bernoulli Effect

In this experiment you will see several

examples of the way in which the motion of a
fluid, air, affects its pressure. You will not be
required to record data in the usual way, but
you should write down what you see in each
case. Sketches may be helpful.

Procedure

1.

Hold a piece of notebook paper in front
of your mouth as in Figure 28. What
happens to the paper when you blow
across its upper surface?

Figure 28.

Stick a pin through the center of a 3 in
X 5 in index card. Insert the pin into
the center hole of an ordinary household
spool, so that the card covers the end of
the spool. Blow through the other end of
the spool. What happens?

Fold a 3in X 5 in index card as shown in
Figure 29. Place the card on the edge of
a table and blow through the “tunnel”
formed by the card and the table top.
What happens? Can you blow the card
off the table in this way?

»

Figure 29.

Attach an air supply hose to the nozzle
provided. Turn -on the air and place a

Ping-Pong ball in the air flow as in Figure

30. Describe what happens as the air
stream is slowly tilted away from the
vertical position.

AIR
Figure 30.

Replace the nozzle with a funnel. Turn
the air on and place a Ping-Pong ball in
the throat of the inverted funnel (see
Figure 31). Release the ball and describe
what happens.
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Tape a piece of thread to a Ping-Pong
ball and suspend it near a stream of
water from a faucet. What happens?

Tape some thread to a second Ping-Pong
ball and hang the two balls so that they
are the same distance below a horizontal

10.

support and about 5 cm apart. Blow
gently between them. What happens?
Describe the result of blowing harder.

Fill the U-shaped glass tube about half
full of water. Blow across one open end
of the tube and ask a classmate to
describe the results. Be careful to blow
horizontally and not down into the tube.

Observe the behavior of the atomizer
when you squeeze the bulb. Do you see
any connection between the behavior of
this device and the effects observed in
steps 1 through 8?

Examine the aspirator carefully. Then
hook up the aspirator supply hose to a
water outlet. When you are sure that the
drain hose is properly placed, turmn on
the water and hold your finger over the
open arm of the “T.” What happens?

Think about the observations you have
just completed. Can you identify any
common element of these effects? If so,
you may be able to guess the physical
reason for the behavior of each of the
nine “devices.”



BERNOULLTI’S PRINCIPLE

Did you guess that the pressure exerted
by a fluid is affected by the motion of that
fluid? The greater the fluid speed, the less
pressure it exerts. This important physical
fact is called Bernoulli’s principle.

The Bernoulli principle can be derived
by applying the principle of energy conser-
vation to a small volume of the fluid as it
moves. Such an analysis, which we do later in
an optional subsection, leads to a general
equation which is valid for incompressible
fluids. Referring to Figure 32, the Bernoulli
equation is

Py, + pgh, + 1/zpvf =P, + pghy + Y pv}

(14)
—y, 1
hy 1 WV
A
'
Figure 32.
where:
P, P, = absolute pressure in the pipe at

points 1 and 2.
p = density of the fluid.
g=98 m/s2 = acceleration due to gravity.

hy, h, = heights of pipe, measured from some
arbitrary level.

vy, v, = fluid speeds at points 1 and 2.

In many cases of practical interest, the two
sections of the “stream” are at equal height
(h, = h,) and the Bernoulli equation reduces
to

P, +Ypvl =P, + Y pv? (15)

Note that this agrees with what you observed
in your experiments: the point at which the
fluid speed is greater is where the pressure is
lower. The following example illustrates the
use of this equation in a real device.

Example 13. Figure 33 illustrates an aspira-
tor. Suppose the water speed into the aspira-
tor is 6.66 m/s and water speed just past the
constriction is 20.5 m/s. If the input pres-
sure is 2 X 10° N/m® (1.97 atm), find the
“pumping” pressure. (The density of water is
1000 kg/m®.)

i N

A AN Vo

T

Figure 33.

“Solution. We can apply Bernoulli’s equation

to the points 1 and 2 before and after the
constriction. The pumping pressure P, is the
pressure following the constriction. We know
the following quantities:

v, = 6.66 m/s

vy, =20.5m/s

P, = 2X10° N/m?

P =10° kg/m’

Since the heights in the two parts of the
aspirator are the same, we can use the simpler
form of the Bernoulli equation:

P, +Yapvi =P, + Y pv?
Or:
Py =Py, + Y% pvi - Y pv)

=2 X 10° N/m? + % (10 kg/m?) X

(6.66 m/s)* - ¥ (10° kg/m>) (20.5 m/s)>
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=2 X10° +.22%X10° -
2.10 X 10%°) N/m?
=.12 X 10° N/m?

DERIVATION OF THE BERNOULLI
EFFECT (OPTIONAL)

Figure 34 shows a tank of water with an
outlet at the bottom. Water leaves the bottom
at a speed v, and at atmospheric pressure P .
As you know, the greater the depth of the
water, the faster it flows from the outlet. We
seek first a mathematical expression for the
dependence of the water velocity on its
depth. Such an expression can be obtained by
applying the principle of conservation of
mechanical energy, but to do so we must
make a number of simplifying assumptions.
For example, we shall assume that there is no
friction and that the flow is perfectly smooth
(laminar).

Figure 34.

Another idealized assumption we make
is that v, is the velocity of the water flow
everywhere in the main part of the container.
Then a mass M of water in the container has a
kinetic energy % va. If that same mass
leaves the container, its kinetic energy as it
leaves is %2 Mvi. Thus there has been an
increase in the kinetic energy of the mass M
given by

AKE = Y My? - 5 Mv} (16)
We assume that energy is conserved.
Therefore, this increase in kinetic energy must
have come from somewhere. Where? The level
of water in the container drops somewhat,
thereby decreasing the gravitational potential
energy available. The gain in Kinetic energy
must be equal to this loss in potential energy.
The decrease in height is exactly what would
occur if the mass M were removed from the
top of the container and placed at the
bottom. Therefore, the change in gravitational
potential energy is negative and is given by:
APE = Mg (h, - h,) =-Mgh (a7
The law of conservation of energy states that
the total energy remains constant or, in other
words, that the change in total energy is zero:

AKE + APE=0
Thus:
2 2 _
1/2M(V2 - Vl)“Mgh =0
Dividing by Y2 M:
v2-vi=2¢gh (18)
This tells us how fast the fluid leaves the
container, expressed in terms of the depth A.
A somewhat similar situation is discussed in
the following example.
Example 14. Water falls from the top of a
power dam to the river below, a drop of 80 m
(260 ft). What kinetic energy does each kg of
water have as it reaches the river bed? What
velocity does the water have?
Solution. The kinetic energy gained just
equals the potential energy lost as water falls
80 m.
AKF = Mgh
= (1 kg) (9.8 m/s*) (80 m)

=784



Assuming that v, = 0 (the water has no
kinetic energy as it dribbles over the top of
the dam):

AKE =% Mv: =17847]
v3 = 1568 m?/s*
v, ~ 40 m/s

The process whereby falling water con-
verts gravitational potential energy to kinetic
energy is the basis of hydroelectric power
generation. The falling water collides with the
blades of a turbine, converting the water’s
kinetic energy to rotational energy which
drives the generators. The same principle has
powered waterwheels for centuries.

Returning to the container of Figure 34,
there is another way of looking at the
situation. Certainly, it is the pressure which
causes the water to be pushed out of the
bottom. The surface of the water is at
atmospheric pressure Po. The difference be-
tween this and the pressure in the water at the
bottom of the container Pg is

Pg - Pp = pgh

Combining this with Equation (18) gives:

vs - vi =(2/p) (Pg - Pa)

Notice that Py, the atmospheric pressure,
is also the pressure in the region where the
water is flowing out of the bottom of the
container. Now let PA =P, and Pg =P, , so
that P, is the pressure in the region where the
velocity is v, and P, is the pressure in the
region where the velocity is v,. We can now
write the preceding equation as:

P23 - v}) = (P, - P,) (19)

Now we have a way of calculating the
velocity in terms of the pressure difference, or
vice versa. It doesn’t matter what causes the
pressure difference. Equation (19) is true for
any case of a liquid in continuous flow
without friction. The pressure P, does not
have to be due to the weight of a column of

liquid, nor does P, have to be atmospheric
pressure. Although Equation (19) was derived
for the situation shown in Figure 34, it is also
true for the situation shown in Figure 35,
where three different regions are involved.

—_—
P Ps
Figure 35.

An interesting conclusion can be reached
by inspecting Equation (19): the pressure is
smaller where the velocity is greater. This is
exactly the Bernoulli effect that you observed
in Experiment C-1.

We now consider the case in which the
pipe carrying the fluid is not all at the same
height, as shown in Figure 36. In this situa-
tion, there is a pressure difference due to the
height difference, in addition to that due to
the differences in velocities. We can add the
dynamic pressure difference (due to a velocity
difference) to the static pressure difference
(due to a height difference) to get the ner
pressure difference.

Figure 36.

P, - P, =(p[2) (v - v}) + pg (hy - y)

Note: if the pipe diameter does not change,
v, must equal v,. Why? We can rearrange the
terms in this equation to get the Bernoulli
equation:
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P, + pgh, +Ypv: =P, + pghy + ¥ pv5
(20)

Since the subscripts refer to any two
points in the pipe, the sum of the three terms
has the same value for all points along the
pipe. That is, Bernoulli’s equation can also be
written as:

P+pgh +1 pV2 = constant 2h

where:

P = absolute pressure (due to some impressed
force)

pgh = static pressure due to a depth & of
liquid

% pv® = dynamic pressure due to fluid
velocity v

The Bernoulli equation is valid only if
certain conditions are met. We have already
assumed that the fluid is incompressible and
that there is no friction between the fluid and
the walls of the pipes. In addition, we must
assume that the flow is perfectly smooth, or
laminar. Turbulent flow, involving eddies or
vortices, is not adequately described by the
Bernoulli equation.

Except for rather low velocity flow, the
Bernoulli equation does not work well for
gases, which are highly compressible. How-
ever, as you saw in Experiment C-1, the basic
fact of increased velocity resulting in de-
creased pressure still holds.



SECTION C-2

OTHER HYDRAULIC DEVICES
The Aspirator

Consider a tube with a constricted
throat, as in Figure 37. The constricted throat
is called a venturi. If P, is comparatively large
and the venturi has a very small diameter, the
velocity V, can be quite large. Therefore P, is
less than P, or P;. In fact, P, can easily
become less than the atmospheric pressure
outside this system, Py .

Figure 37. A venturi tube.

If we now connect a tube to the con-
stricted throat, gas or liquid is drawn into the
main stream because of the pressure differ-
ence (Pp ~ P,) (Figure 38). Such a device is
called an aspirator. Chemistry students often
usc an aspirator connected to an inverted
funnel to exhaust the noxious fumes they
frequently generate in the laboratory. If a gas,
such as air, is forced through a venturi, the
pressure drop at the constriction can be used
to draw liquids into the gas stream. Atom-
izers, paint sprayers, aerosol cans, and garden

FLUIDS

FLUID 1 P, | & 2

FLUD 27 P,

Figure 38. Aspirator.

sprayers thus are also aspirators. The carbura-
tor throat in your car is a venturi which draws
gasoline from the bowl while mixing it with
air.

Figure 39A shows a typical aspirator
pump. (Figure 39B is a photograph of an
aspirator.) Water flows in the top and out
the bottom (into a sink). The horizontal arm
can be connected to any container one wishes
to pump.

——— e
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Figure 39A and B. A schematic and a photo of an
aspirator.
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The Siphon

A simple but useful hydraulic device is
the siphon, which is simply a tube or hose
connecting two containers of liquid, as shown
in Figure 40. If the tube is filled with fluid,
the siphoning effect causes fluid to flow from
the higher container to the lower container.

To understand why the effect occurs,
first imagine that a closed valve is inserted at
the top of the hose (point C in Figure 40).
The pressure P, on the left side of the valve is

P, = Pp - Dh,
The pressure P, on the right side is

P, =Pp - Dh,
Thus, with &, greater than &, , the pressure on
the left side of the valve is greater than the

pressure on the right. Then if the valve is
opened, the fluid will flow to the right.

Figure 40.

You will find a problem if you try to
siphon water over a wall more than 34 ft high;
it won’t work. Atmospheric pressure can
support a column of water 34 ft high, but no
higher. Thus, if the wall is higher than that, an

attempt to siphon over it would fail. If one
started with the hose full of water, the level
would merely drop until its height was 34 ft
in each arm, with a vacuum (P = 0) in the
middle section. Then each arm would act as a
water barometer. The system would sit there
with nothing happening.

If you have never used a siphon, you
would enjoy trying one out.

PRESSURE MEASURING DEVICES
(GAUGES)

The Open-Tube Manometer

Perhaps the least complicated device
used to measure static pressure is an open-
tube manometer, shown in Figure 41. The
fluid whose pressure is to be measured exerts
a pressure Py on one surface of the liquid in
the tube. The atmosphere exerts a pressure
Pa on the other surface of the liquid. If the
two surfaces are at the same level, the two
pressures are equal. If the two surfaces are a
vertical distance A apart, the difference in
pressure between the two arms is just that due
to the column of liquid of height 4. That is,
Py - Pa = pgh, where p is the density of the
liquid in the tube.

If this result is not obvious, perhaps the
following discussion will help. The pressure at

LIQUID OF
DENSITY P




the bottom of the left part of the tube is Py
+ pgh, and the pressure at the bottom of the

right side of the tube is Py + pgh,. At the
bottom of the manometer, these two pres-
sures are equal. Why? Then

PM + pgh; = Pa + pgh,
Py - PA =pg(hy - hy) =pgh (22)

The gauge pressure on the manometer is just
Py -~ Pp = pgh. The manometer scale may be
calibrated in any convenient units.

Example 15. The fluid in an open-tube
manometer is mercury (p = 13.6 g/cm’).
When it is attached to a cylinder of gas, the
“pressure head” A produced is 10 cm. Deter-
mine the gauge pressure and the absolute
pressure in N/m?.

Solution. The gauge pressure is the pressure
due to the 0.1-m head of mercury.

Pg = pgh
=(13.6 X 10® kg/m>) (9.8 m/s*) (0.1 m)
=1.34 X 10* N/m?

The absolute pressure is greater than the
gauge pressure by one atmosphere.

Py =Pg + Po = Pg + 1 atm
=Pg + 1.01 X 10° N/m?
=(1.34 X 10* +1.01 X 10°) N/m®
=1.14 X 10° N/m?
Barometers
The barometer, which was mentioned
earlier, is an example of a closed-tube
manometer. (See Figure 42.) The weight of a

column of mercury is balanced by the force
exerted on the open mercury surface by the

VACUUM >

MERCURY

ATMOSPHERIC
PRESSURE

Figure 42.

pressure of the atmosphere. The space at the
closed end of the tube exerts essentially zero
pressure on the mercury column, so Py =
pgh. At one atmosphere of pressure, the
height of the mercury column is

Py 1.01 X 10° N/m”
pg  1.36 X 10* kg/m*® X 9.8 m/s?

h =

=.760 m = 760 mm

The height of the column of mercury in
a barometer in millimeters of mercury or
inches of mercury is most often used to
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specify atmospheric pressure. You may have
heard a weather report saying that the barom-
eter reading is, for example, 29.92 in. This
means that the measured value of atmospheric
pressure at the weather station is 29.92 inches
of mercury. Actually the measurement proba-
bly was not made with a mercury barometer.
Instead, a more compact instrument called an
aneroid barometer was likely used.

The aneroid barometer is another hy-
draulic device. The small metal can (see
Figure 43) contains air at a pressure much
lower than atmospheric pressure. The flexible
lid of the can bends slightly in response to
small changes in atmospheric pressure. This
bending is measured by a mechanical system
attached to a scale. The scale is usually
calibrated in inches of mercury by comparing
the response of the instrument to that of a
mercury barometer. Since the value of atmo-
spheric pressure ‘decreases as one’s altitude
increases, the scale of an aneroid barometer
can also be calibrated to read altitude. The
instrument is then called an altimefter.

POINTER SPRING

=

FLEXIBLE LID—
Figure 43.

The Bourdon Gauge

Manometers are awkward to use, so
another type of gauge called a Bourdon gauge
is frequently used in technical applications.
The Bourdon-type gauge (Figure 44) is basi-
cally a curved tube sealed at one end. Pressure
exerted through the open end of the tube
tends to make the tube, which is fastened at
its open end, straighten out. The movement

of the free end causes a pointer to move over
a scale. A familiar party favor, Figure 45,
helps to illustrate the principle.

Figure 44.

Figure 45.

PRESSURE MEASUREMENTS

For moving liquids, we may measure any
of three different pressures. One is the static
pressure which would exist if the liquid were
not moving. A second is the dynamic pres-
sure, given by ' pv>. The third is the total
pressure which includes both the static and
dynamic pressures.

A Bourdon gauge or a manometer can be
used to measure either static pressure or total
pressure. Which pressure is measured depends
on the way the instrument is connected to the

pipe.



It is possible (see Figure 46A) to connect
a gauge to the pipe in such a way that its
presence does not significantly disturb the
fluid flow. If the gauge is a manometer, the
pressure difference across the two arms of the
manometer is

Pp ~ P, = pmgh

where py is the density of the liquid in the
manometer, P, is the pressure in the pipe, and
P, is atmospheric pressure. Thus the pressure
measured by the gauge is the difference
between the atmospheric pressure and the
pressure in the flowing fluid. The pressure in
the fluid is then:

Py = Pa - pmgh
or it is the difference between atmospheric

pressure and the pressure measured by the
gauge.

Figure 46A.

PI
— p
vi V=0
Figure 46B.

Alternatively, one can mount the gauge
as shown in Figure 46B. The open probe
facing into the flow is called a Pitot tube
(pronounced pea-tow). The pressure in the
tube increases until it offsets the pressure at
the opening. In such a case, a “dead” point of
no fluid flow is formed at the opening of the
tube. One can apply Bernoulli‘s equation to
the fluid to find the pressure difference
between the opening of the tube and a point
well removed from the probe opening

Py +%pvi =P+0 (23)

where P, is the pressure in the flowing fluid,
vy is the fluid velocity, pp is the fluid
density, and P is the pressure at the opening
of the tube. As above, the manometer dis-
plays the difference between atmospheric
pressure and the pressure at the opening at
the Pitot tube. That is

Pp - P=pmsgh 24

P=Pp - pmgh =P, +Ypvi
P is called the fotal pressure.
The Pitot Tube

Equation (23) suggests a way in which
the velocity of a liquid can be measured. By
using the two gauges of Figure 46, P, and P
can be measured. Then the velocity-
dependent part of the pressure (dynamic
pressure) is the difference of the two
readings:

Vopvi =P- P, =Py

vy =v2Py/pL

Example 16. An arrangement such as that in
Figure 46 is used to measure velocity of water
in a pipe. If the difference between the two
pressures is 2 lb/inz, what is the velocity of
the water?

(25)

Solution. We may apply Equation 25 using D
= pg:
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/ZgPV
=\/2(32 ft/s?) (2 Ib/in?)
62.4 1b/ft°

2 (32 ft/s*) (288 1b/ft?)
62.4 1v/ft’

7 ft/s

A different device, also called a Pitot
tube, combines the two measurements of
Figure 46 into a single manometer. Thus it
gives a direct reading of the pressure differ-
ence for moving and stationary parts of the
fluid. As shown in Figure 47, the pressure in
side 4 of the manometer is the pressure of the
stationary fluid at the inner tube. The pres-
sure in side B is the pressure of the fluid
moving past the side holes in the Pitot tube.

- )

. T
—  PITOT TUBE ~

B_

| A

'.,._,J

MANOME TER

Figure 47.

The Pitot tube works well for measuring
the velocity of gases, provided that the
velocity is not so high that compression

4¢ effects become important. Airspeed indicators

use such a device to measure airplane speeds
relative to the air. Figure 48 is a photograph
of a typical Pitot tube.

Figure 48.

Incidentally, if the flow is out of a
system, either through the end of a pipe or
from a hole in a container, then the velocity
can be experimentally determined without
using a pressure measurement. One has to
measure the volume that escapes in a period
of time. The volume which escapes can be
computed using Figure 49. If the water flows
at a speed v, then in a time ¢ it would fill an
imaginary cylinder whose base is 4, the area
of the hole whose length is v#. Thus the
volume of outflow is ¥V = Avt, or solving for
the velocity:

>

Figure 49.




Example 17. A vandal shoots a hole in a
water tower with a 22-caliber bullet (diameter
= .25 inches). If 0.43 ft* of water escapes in a
minute, calculate the outflow velocity.

Solution. The area of the hole is A = 7D*/4.

3.14 (25)%
Az__(__)_
4

=.05in> =3.6 X 10° ft?

V = vLAt

14 (0.43 ft*)

LT U T 3.6 X 10° ft°) (60 s5)

= 20 ft/s
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EXPERIMENT C-2. Blood Pressure Measurements

One familiar pressure measurement is
arterial blood pressure, using a sphygmo-
manometer (sfig-mo-man-o-miter). This device
(shown in Figure 50) enables a doctor or
nurse to make an approximate measurement
of the pressure in an artery withoutr having
access to the fluid (blood). It provides an
indirect measure of the gauge pressure in the
circulatory system. For medical purposes,
easily reproducible information about abnor-
mally high blood pressure or sudden changes
in blood pressure is more important than
extreme precision. Blood pressure actually
depends in a complex way on heart muscle
contraction, circulatory system constriction,
location in the body, blood flow velocity, and
many other factors. Difficulty with any one
of a number of bodily functions may show up
in an abnormal blood pressure.

Blood pressure measurement is an excel-
lent example of a situation where the precise
physics is complex, but a good understanding
can come from an analogy with simpler
hydraulic systems, such as those studied
elsewhere in this module. Physicists often
analyze complex systems in terms of simpler
“models” they are able to understand more
clearly.

Blood pressure varies between a maxi-
mum and a minimum value. The peak value,
called systolic pressure, corresponds to the
pumping action or contraction of the heart.
Depending on the rate of heart contraction
(pulse rate), the systolic pressure occurs about
70 times each minute (or once every
1/70 min). Figure 51 is a sketch of blood
pressure (torr) versus time for a normal
individual at rest. Notice that the time be-
tween peaks gives the pulse rate. The mini-
mum pressure is called the diastolic pressure,
and is never zero. These two values of
pressure (maximum and minimum) are the
variables recorded for a blood pressure mea-
surement. A typical value for a healthy adult
might be 130/80, which means that the
systolic (maximum) pressure is 130 torr and
the diastolic (minimum) pressure is 80 torr.
The values found for a given person depend
on many factors, including fatigue, excite-
ment, anxiety, recent food, cigarettes or
alcohol, and others. The most useful data are
obtained under controlled conditions, when
the person is at rest for a period of time prior
to measurement. Often, repeated measure-
ments are taken to improve accuracy.

CUFF RELEASE
—~ VALVE
_ r—BULB
PRESSURE ] L >
GAUGE ™
H
STETHOSCOPE —

Figure 50. A sphygmomanometer.
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PROCEDURE with time between a maximum and a mini-

Obtain a sphygmomanometer and identi-
fy the following parts (see Figure 50):

1. An inflatable cuff to wrap around the
upper arm.

2. A pressure gauge (mercury manometer
or Bourdon type) which indicates the
pressure in the cuff in torr (or the
equivalent older unit, millimeters of
mercury).

3. A hand pump to inflate the cuff.

4. A valve to release air from the inflated
cuff.

A stethoscope is required to use the
sphygmomanometer for blood-pressure mea-
surements. Blood pressure is measured by
wrapping the inflatable cuff around the upper
arm an inch or two above the elbow. The cuff
is inflated to a pressure which is sufficient to
constrict the main artery and thus stop the
blood flow. Since the sphygmomanometer
cuff, the skin on the arm, and the wall of the
artery are all flexible, the pressure produced
inside the cuff is transmitted to the inside of
the artery. When the cuff pressure is greater
than the arterial pressure, the artery is col-
lapsed, stopping the flow of blood. Remem-
ber, however, that the arterial pressure varies

mum value.

During measurement, the cuff pressure is
slowly decreased (by letting air out of the
cuff) until the pressure in the cuff, Pc, just
equals (or is slightly less than) the systolic
arterial pressure, Pp. At this cuff pressure
some blood is forced through the constricted
artery at each heart beat. The blood passing
the constriction makes sound which can be
detected with a stethoscope placed on the
arm, just below the cuff (inside the elbow).
At higher cuff pressures no sound is heard
because no blood gets through. Thus, the
determination of the systolic pressure corre-
sponds to the cuff pressure at which fluid
sounds are first heard, as the cuff pressure is
slowly decreased from a value high enough to
stop all blood flow.

By continuing to reduce the cuff pres-
sure, the flow restriction is diminished. How-
ever, the stethoscope continues to pick up
sounds as long as any constriction of the
artery exists. Eventually the cuff pressure
equals the minimum blood pressure and the
constriction disappears. With no resistance to
flow, the blood passes through without a
sound. Thus, the cuff pressure when the
sounds disappear is the diastolic pressure. This
cuff pressure corresponds to the minimum
blood pressure in an unconstricted artery.

Working in pairs, measure each other’s
blood pressure. Take repeated readings and
don’t expect great accuracy, since some prac-
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tice is required. Look for left arm-right arm
differences, the effect of exercise, or other
variables.

Question. If you want to measure the heart
pressure, you must make the measurement
with the upper arm at chest level. Why is this

necessary? Think about the simpler hydraulic
systems you have studied. (What affects pres-
sure in a fluid?) If you think you know the
answer (or your instructor tells you), devise
and perform a simple experiment to test
whether or not this requirement is really
important in blood pressure measurement.



HYDRAULICALLY ACTUATED
CONTROLS

Liquid pressure and fluid flow are used
to control mechanisms found in many com-
mon devices. Some of these devices are
described below. You probably can think of
other examples. :

Figure 3 illustrated the float-level con-
trol in a toilet tank. As the float at one end of
the lever rises with the water level, the other
end of the lever presses a rubber-tipped piston
against a valve seat, and this shuts off the
water supply.

A carburetor float control (Figure 52) is
quite similar. As the level of gasoline in the
bowl of the carburetor drops, the float-lever
mechanism opens the inlet from the fuel
pump. What happens if the float is set too
high or too low?

GAS

f’*—INLET

NEEDLE VALVE FLOAT
FLOAT PIVOT
' PIN

s

Figure 52.

An automobile radiator cap and a pres-
sure cooker safety wvalve are safety devices
which will open at a preset pressure. The
pressure at which the radiator cap opens is
determined by the stiffness of the spring,
shown in Figure 53. In addition, pressure
cookers have a pressure-regulation valve, as in
Figure 54. The operating pressure of the
cooker is determined by the weight of the
valve. When the pressure becomes great
enough, the weight is lifted and jiggles a bit,
releasing some of the steam, thus keeping the
pressure approximately constant.

- SPRING
= - RUBBER SEAL
Figure 53.
VALVE

LID

1L
tHit

Figure 54.

The automobile brake-light switch and
the oil-pressure indicator switch are good
examples of pressure-activated electrical
switches (see Figure 55). Pressure-activated
switches of this type are connected to lights
or buzzers to warn of high or low pressure
conditions in hydraulic systems.

TO LIGHTS &

T0
BATTERY RUBBER
BRASS PLATE DIAPHRAGM

Figure 55.

These devices are specific examples of a
type of technology called fluidics. This tech-
nology uses controlled fluid flow to perform
the same control functions as do electronic
devices. Fluidic devices are much slower than
electronic devices, but they have one great

51



52

advantage. Because they are part of a sealed
system, they are very reliable in dirty environ-
ments. Thus, they are often used in industrial
processes such as metal refining and fabrica-
tion. In hospitals, portable respiratory
therapy units use fluidics to control air or
oxygen flow in assisted breathing applica-
tions. This use of pressure and flow control
eliminates the need for a possibly dangerous
electrical system in the apparatus.

SUMMARY

Bernoulli’s principle states that the faster
a fluid flows, the lower the pressure. For
non-turbulent flow of an incompressible non-
viscous fluid, the Bernoulli equation applies:

P+ pgh +% pv2 = constant

The aspirator is based on Bernoulli’s
principle.

The barometer, the manometer, the
Bourdon gauge, and the Pitot tube are all used
for pressure measurements.

The sphygmomanometer is used to mea-
sure blood pressure by determining the maxi-
mum and minimum pressures required to
constrict an artery.

Atmospheric pressure and the variation
of pressure with depth are the basic ideas
behind the operation of a siphon.

PROBLEMS

1. The water tank of a building is filled to a
depth of 4 ft. The air above the water is
compressed to a pressure of 10 psi when
the tank has 4 ft of water in it.

a. What are the absolute and gauge
pressures at the surface and at the
bottom of the water?

b. What is the velocity of water flow
out of an open pipe at the bottom
of the tank? (Assume that the tank
is so large that for all practical
purposes v = 0 in the tank.)

2. A rver is 60 m wide and 3 m deep as it

goes over a waterfall. The stream is
flowing at 2 m. If the falls are 90 m high,
how much energy would be available
each second for hydroelectric power
generation, if all the water could be
channelled through a turbine?

3. A chocolate bar manufacturer wants to

run liquid chocolate uniformly onto a
moving conveyor belt. The belt moves at
a speed of 8 ft/s. What height of choco-
late in the storage tank will maintain the
proper outflow onto the moving belt?
(You must make the assumption that the
flow is frictionless.)

STORAGE TANK

3 fps

Figure 56.

4. A swimming pool has a hole of area ¥

in? at the bottom. Water freely runs out.
How many gallons per hour must be
supplied to maintain the water level at
4 ft above the bottom?

5. A small town (area 3.5 square miles) has

a single 16-in-diameter storm sewer pipe
which drains rain water from the town
to a river at the bottom of a canyon
60 ft below the town’s level. If 1.3 in of
rain falls in 2 h and 40% is lost to ground
absorption and evaporation, how long
will it take for all the rainfall run-off to
be cleared through the sewer?

6. A stream of water with a 1-in diameter is

projected with a velocity of 20 ft/s
against a wall. What pressure would a
gauge indicate at the point of impact?



Water pressure in a house is 30 lb/in2 A
leaky faucet drips 1 gal per h. What is
the effective area of the leak?

A test chamber at a submarine design
laboratory operates to simulate the sub’s
maximum speed by flowing water past a
fixed model of the submarine. The pres-
sure difference measured with a Pitot
tube is 20 Ib/in’.

Calculate the water flow velocity
(submarine’s maximum speed).

If the test tank flows 100,000 gal in
90 s and the test chamber is 3 ft” in
cross-sectional area, recalculate the
flow velocity and compare your
answer to the result in part a.
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3.

WORKSHEET
EXPERIMENT A-1. Devices
Auto Jack L, =

Student’s weight (approximate
ght (app ) Distance from pivot to small cylinder:

L, =
Applied force (read on spring scale)
Ratio:
L,
Weight s =
= = L, -
Force -

C. Questions you would like answered

Description of jack: about the hydraulic devices in the lab:

Length of handle, from pivot to end:



WORKSHEET
EXPERIMENT A-2. Hydrometry

A. 1. Known Liquids

Known Measured
Specific Specific
Liquid Gravity Gravity
2. Unknown Liquids
Specific Identification
Liquid Gravity of Liquid
A
B
C
D
E

3. Sugar Solution
Range of Specific Gravity.

From to
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B. 1. Density of the balls in an inexpensive hydrometer.

Volume H, O Volume Antifreeze Number of Balls
(cm®) (cm?®) Which Float Pmix @&/cm>)
50 0
50 5
50 10
50 15
50 20
50 25
50 30

3. Comparison of experimental values for freezing points of antifreeze solution to freezing
point indicated by container label.

Protection
to CF)

Percentage Antifreeze
Experimental Value

Percentage Antifreeze
Value from Container

+30°

+15°

00

-15°




WORKSHEET

EXPERIMENT B-1. Pressure Dependence

on Depth

1, 2. Data Table

Spring Balance Force Depth
Port Reading (g) (dyn) (cm)
1
2
3
4
4. Slope of the Graph
a. From your graph, find the values of b. Calculate the rise and the run:

pressure and depth at two points
(use two points on the line you
draw, not two actual data points):

P,=____ (dyn/em?®)
P,=___ _ (dyn/cm®)
hy=_______ (cm)
h,=____ (cm)

Rise = P2 - Pl =
Run=#h, - h; =
Calculate the slope:

rise P2 - Pl
Slope = — = ——
run Ak, -k,
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WORKSHEET

EXPERIMENT B-2. Measuring Density

A. Finding Density from Displaced Volume

Mass of Object Volume of Water Volume of Volume of Density of
(g) in Graduated Water plus Object Object
Cylinder Object (cm®) (g/cm3 )
(cm®) (cm®)
B. A More Accurate Measure of Density
Object Object
No. 1 No. 2
Mass in air
Ma (®
Apparent mass
in water
Mw (g)
Volume

(Ma - My)/(1 g/cm®) (cm®)

Density s
px (g/cm™)




C. Objects Which Float

Object
No. 1

Object
No. 2

Mass of object in air
Ma (g)

Apparent mass
Object in air plus sinker in water

(Mp + Mgsw) (8)

Apparent mass
Both object and sinker in water

Mw + Msw) ()

Volume of object
[(Ma + Msw) - (My + Msw)1/(1 g/cm®)

Density ,
px (g/cm™)
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WORKSHEET

EXPERIMENT B-3. A Closed Hydraulic System

1. Diameter of large plunger

Diameter of small plunger

2.

Input Force | Output Force | Output Force Pressure at Pressure at Ratio of

Mg (dynes) | Before Tapping | After Tapping | Large Plunger Small Plunger | Fout/Fin
Average ratio |




