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Chapter 22 INTRODUCTION TD WAVES

To this point we have discussed the reflection and
refraction of 1light, and how these phenomena might be
explained if we regard light to be composed of particles.
However, a simple particle model of light is inadequate to
explain the results of experiments involving the speed of
light in various media. It is logical then to seek an
alternative model for light, and with this goal in mind we
begin a study of waves. In this chapter, we will take a
look at how the behavior of a pulse on a spring is
analogous in many ways to the behavior of light. This
hints that a wave model for light is worth pursuing in
detail. In later chapters, we will refine the wave model
and discover that it predicts some properties of light
which most of us ordinarily never encounter, but which can
indeed be observed if we perform careful experiments.

PERFORMANCE OBJECTIVES
After completing this chapter, you should be able to
1. Panerate a pulse on a slinky and predict its beshavior:
a. as it travels along the slinky
b. when it reflects from an "open" and "closed" end.

c. when it is transmitted to a slinky of different
density.

2. Construct a (sideways displacement vs position along
the slinky) graph and use the graph to calculate the
sideways velocity of the slinky.

3. Use the principle of superposition to predict the
resultant shape of a spring when two pulses cross.

4. Debate how the one dimensional wave model relates to
the behavior of light

a. when it is reflected
b. when it is refracted

c. when two or more light beams are superimposed one
upon the other.
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Read:

Suppose you look out your window and see your neighbor across the

street sitting on his porch. In how many ways could you do something
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Section 22-1 A Wave:

Something Else That Travels

page 449

to attract his attention, make him move, or otherwise influence his
actions? Can the ways identified be separated into a few (how many)
classes?

Experiment: Waves in One

Do only Part A:

b. Optional...There are two factors which govern the speed that a
The first is tension.

Cs

Answer each questioni then have evaluated by your instructor.

pul se moves

Dimension

along the slinky.

Tension is the measure of the

is applied to the slinky.

the slinky.

slinky by the length that the slinky is stretched.)

Transverse Waves in a Spring

(Experimental Notes Provided)

force (in Newtons) that

The second is the density of

(This is found by dividing the mass of the

Verify the following formula by comparing calculated
with experimental values.

vZ =

View Film Loop: #81291

Problems: page 452: #1

Read:

Experiment:

b. View Film Loop:

C.

Answer ®ach gquestiong

View Film Loop:

<XxZCm

Section 22-3 Superposition:

Superposition

T = Tension (N)

T/m/L m = mass Of slinky (kg)
L = length of slinky (m)

Single Pulses in a Spring
(Film Notes Enclosed)

#2 #4

Waves in One Dimension Part B:

#81590 Superposition of Pulses

Pulses Crossing page 453

- .

Collision of Wave Pulses:
(Experimental Notes Provided)

#81293 Superposition of Pulses in a Spring

then have them evaluated by your instructor.

-

{(Computer Animated)

DEFINE THE FCILOWING :

(1.) MICROWAVE
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10.
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The graph below shows a pulse (solid line) at a given time "t". The
dashed line shows the pulse 0.002 seconds later. The pulse has a
velocity of 100 m/sec to the right.

a. Of the six points (A, B, C, D, E, F), which are moving up? Down?
Not moving?

b. Which point(s) are moving fastest?

c. Determine the velocity of each segment that is moving. Then graph
the sideways velocity of the segments of the rope as a function of
the position along the rope on the axis provided directly below
the first graph.
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Problems: page 457: #& 7 #8 #9 #10 #11

11. Obtain transparency titled "Superposition” from your instructor

a. Place pulse A in position A; and pulse B in position B; under the
plastic overlay. Pulse A (moving to the right) interacts with
pulse B (moving to the left). Below each pulse is a graph of
velocity of points of the rope at that given time. (Assume that
the remaining length of rope remains in the equilibrium
position.)
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b. Now move pulse A and B to A, and By respectively. Using the
principle of superposition, determine the shape of the rope at
this time. Using the same principle, determine the resultant
velocity of each point. You can draw on the plastic overlays
using a grease pencil.

c. Repeat this procedure as A moves to the right and B moves to the
left. As you complete this exercise, you should be comparing
your results with Figure 22-5, page 4353.

d. Repeat the above using pulse C instead of pulse B. Compare your
findings with Figure 22-7, page 4385. (:::::)

12. Experiment: Waves in One Dimension — Part C.
a. Answer each questioni then have evaluated by your instructor.
13. View the following Film Loops. {(Film notes enclosed.) (::::::)

a. #81294 - Transverse Wave Apparatus

b. #B1296 - Transverse Btanding Waves in a Spring - Wave Groups

c. #81297 - Transverse Standing Waves in a Spring - Continuous
Wave Trains

d. #B81295 — Reflection of Waves in A Spring — Free and Fixed End

14. Read: Section 22-4 Reflection and Transmission page 457

15. A review sheet titled "Boundary Conditions for a String” has been
included for your examination. Information taken from pages 415-416
of "College Physics" by Sears and Zemansky (Third Edition).

16. Problems: page 459: #12 #13 #14 #15 #1646
page 443: #20 #21 #22 #23 24

« s e NOt@....Discuss #22 with your instructor.
17. Read: B8Bection 22-5 Idealizations and Approximations page 460

1i8. What have we learned so far from the activities of this chapter? Make
a brief outline and discuss it with your partner. Your instructor
would like you to share the ocutline with him.

19. Has your understanding of wave behavior in one-dimension been such to
suggest whether or not it can be used as a model of light? How does
the status of the wave behavior compare in your mind to the particle
behavior model?

20. Read: BSection 22-4 A Wave Model For Light? page 442

21. Complete the two-page construction work sheets, and have it evaluated.
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10.

16.

(1)
(2)
(4)

(a)

(a)
(b)
(c)

(&)
(7)

(12)
(14)
(15
(16)
(20)
(21)
(22)

(23)

ANSWERS CHAPTER 22

At the point of maximum displacement.
It would still move up first.
S.A.B.

regions that are not clear indicate motion
leading edge moving up, trailing edge moving down

D - up B,E — down A,CyF — not moving
D
B = -20 m/sec D = + 30 m/sec E=- 10 m/sec

Be sure to discuss with your instructor.

no
(8) (9) (10) (11) 8S.A.B.

(13) S.A.B.

The incidence pulse.

Three

The pulse is smaller in the bottom frames.

The speed of the pulse is less in the second coil.
8.A.B.

In springs: if moving from greater to lesser speed -
reflected pulse is upside down

From air to water, we’'d expect reflected pulse to be
reflected upside down.

(24) S.A.B.
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TRANSVERSE STANDING WAVES IN A SPRING
®x%  WAVE GROUFS w#*%*
812956

Film Summary

A pulse moving from right to left is
reflected at a fixed end and becomes Aa
pulse going from left to right. Thais
procedure 1is repeated with pulses that
become pragressively more complex, such
as a crest followed by a trough, then a
wave train with two crests and two
troughs. Successive pulses have
increasingly greater numbers of crests
and troughs. Slow motion shows what
happens at the reflected end, and it is
seen that during the interval when both
incident and reflected waves are 1n the
same region, the pattern is no longer
that of a running wave. There are
crests and troughs, but they move
neither to the left nor to the right.
Instead, each crest flattens out and
becomes a trough whichy in turn,
flattens out and becomes a crest again.
In other words, superposition of two
waves has produced standing waves.

An experiment is performed with three
long spiral springs. The top one
carries waves from left to right, the
bottom one carries waves from right to
left, and the middle one carries waves
in both directions. When the ends of
the springs are vibrated in simple
harmonic motion, running wWaves are seen
in the first and third springs and a
standing wave in the middle one. This
is shown first at normal speed and then
in slow motion.

Concepts

The main concept 1s that of a standing
wave. Interference of two wave trains
is illustrated and explains how two
continuous naves going 1in opposite
directions produce, in obedience to the
principle of superposition, a wave that

is stationary i1n space. Such a wave
exhibits nodes and antinodes. Waves of
the same frequency and amplitude

generated simultaneously at both ends of
a spiral spring can result in standing
waves, but there are several instances
in the film when it is clearly seen that
once a wave has been started 1t can
interfere with its reflected wave to
produce standing waves., It 18 not

necessary to have independent generators
at each end of the spring.

TRANSVERSE STANDING WAVES IN A SFRING
< #% Continuous Wave Trains #%
81297

Film Summary

One end of a long spiral spring is moved
at right angles to its length in simple
harmonic motion. This generates
transverse waves which travel to the
fixed end where they are reflected back
along the spring. They begin to set up
transverse standing waves. The motion
of selected points on the Spring,
singled out by circul ar patches attached
to it, is observed with the aid of slow
motion and special lighting effects
which reveal that there is essentially
no motion at the nodes, and simple
harmonic motion' of large amplitude at
the antinodes.

In another sequence individual exposures
long enough  to produce blurring
emphasize the fact that all points
except those at the nodes move 1n simple
harmonic motions of varying amplitudes.
In some sequences the frequency of the
generating mechanism does not correspond
to one of the natural frequencies of the
spring and no clear standing wave
pattern results. The film ends with
successive close-ups of two of the
natural modes of vibration.

Concepts

Some of the natural modes of oscillation
of a spiral spring in transverse motion
are produced by vibrating one end of it
at the corresponding characteristic or
natural frequencies. The special
behavior of points at nodes and
antinodes 1is examined with care. What
we see are transverse standing waves 1in
an approrimately one-dimensional medium.
Interference between incident and
reflected transverse waves with common
frequencies and amplitudes produces the
standing waves and their corresponding
nodes and antinodes by superposition.

SINGLE PULSES IN A SPRIMNG
81291

Film Summary
A well-illuminated long spiral spring

suspended 1n a horizontal position by
thin strands of gut fish line leader 1s

used to demonstrate pulses. For
transverse pulses these strings are
equally spaced and vertical. For
longitudinal pulses, two. strands
attached at equal intervals along the
spring form V-shaped bifilar

SUSpENSioNs.

The far end of the spiral spring is
mounted in a way that damps the motion
50 that no disturbing reflections take
place. Single transverse pulses are
sent down the spring and are observed at
normal speed and in slow motion. HWith
close-ups in slow motion the camera
focuses on a single spot on the spring.
A round paper disk allows examination of
its motion as the pulse passes by.

A similar series of shots permits study
of single longitudinal pulses formed in
the spiral spring first by compression
and then by rarefaction. Once again a
spot is singled out using a paper disk
for close-up and slow observation of the
details of its motion as pulses of
compression and rarefaction pass by.

Concepts

A pulse 1is a transient motion which
occurs at a certain place and time in a
medium and which 1is later reproduced
identically at another place in the same
medium. The experiments show that in a
pul se whatever happens here and now will
happen identically elsewhere and later
in the same medium.

Strictly speaking, a spiral spring is
only approximately one-dimensional, but
its length is so much greater than 1ts
width that the approximation 15 quite
good for small amplitudes. The effect
of a pulse on a single particle is shown
in slow motion. We see that 1n a
transverse pulse the motion is at right
angles to the direction of propagation
{along the spring) and that in a
longitudinal pulse it 1s parallel to it.
Other concepts presented are compression
and rarefaction.
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TRANSVERSE WAVE AFFARATUS
B1274

Film Summary

A torsion-bar machine is used to
generate waves. 1t consists of a long
thin wire to which rode are attached at
regular intervals. Each rod is at right
angles to the wire and is attached at
its midpoint. The wire 1s supported
horizontally. kWhen one of the rods 1s
pushed up or down so Lthat 1t rotastes
about its point of support, it twists
the wire so that SUCCESS1 Ve rods
experience a twist in consecutive order.

The twist aleso generates a restoring
torque which tends to bring the rogs
back to their original position. The
result is that an angular pulse applied
to one rod travels slowly down the wire,
producing large and easily visible
angular displacements. If one rod is
moved in simple angular harmonic motion,
a continuous running wave is sent down
the wire. Interference between the
outgoing and retlected waves produces
standing waves.

. Concepts

The nomenclature associated with waves —
frequency, period, amplitude, wavelength
etc. - is presented. Standing waves are
produced by the superposition of two
WAVES of the same frequency and
anplitude going in opposite directions.
Standing wave patterns are established
only for the natural frequencies
associated with the natural modes of
oscillation of the system. Reflection
with a change of phase which occurs at a
fixed end is illustrated, as well as
reflection with no change of phase which
occurs at a Ffree end. Damping 1s
illustrated with the use of a hydraulic
damping device. The pattern observed
along the rods is a transverse wave with
its characteristic nodes and antinodes.
The concepts of torsion and restoring
torque are chown 1n connection with the
twist expoerienced by the rod.

SUPERPOSITION OF FULSES
81590

Film Summary

A transverse pulse 1n the form of a
crest travels from left to right on a
straight line representing a stretched
Spring. Ubsarvation of a chosen point
on the spring reveals that 1& woves only
at right angles to the direction of
pulse propagation when the pulse passes
by 1t. A similar observation 15 made
for a trough moving t+rom right to left.

A crest and a trough starting at
opposite ends of the spring meet at the
center and o©bey the principle of
superposition as they cross each other.
The motion is repeated, and this Lime 1t
is stopped several times to observe how
the displacements y. and y. conbine to
produce the curve whose ordinate is
Y + yu. At a certain instant during
the crossing y: + y. is everywhere czero.

A similar sequence i1s shown with two
crests coming from opposite directions.
This time, at a certain instant y. + y..
produces an amplitude equal to the sum
of the amplitudes of the two pulses.

Superposition of pulses in two sine wave
trains of wunequal amplitudes 1s then
shown, followed by superposition of
triangular and square pulses. The film
ends with two sine pulses of i1dentical

. frequencies and amplitudes crossing and

forming standing waves for a very brief
instant.

Concepts
The principle of superposition applied

to single pulses or to wave trains
asserts that 1f one pulse or wave can

produce the displacemsnt Y. at a
certain point and another can produce
the displ acement v at the same

point at the same instant, the combined
displacement at that point is simply

.individual crest amplitudes.

-2-
Y * ¥, where vy, + y.. are algebraic
quantities that may be positive,
negative, or zero. When two crests

moving in opposite directions meet, a
new crest 1is created momentarily whose
amplitude is equal to the sum of the
When a
crest and a trough are combined, this
sum is zero for an instant for many
particles near the center of the spring.
The spring, in other words, 1s straight
where the two pulses meet and cancel
each other.

The term interference 1s often given to
the addition of displacements in
obedience to the principle ot
superposition. This term 15 unfortunate
boecause the pulses proceed after they
cross, as if they had never met. In the
usual sense ot the word, they do noc
interfere. We see that the principle of
superposition applies to pulses with
special shapes and to short wave trains
as well. Although the fi1lm does not
illustrate 1t, the principle also
applies to two and three dimensional
media.

This ability of waves to cross in the
same medium withoot permanently damaging
one another 15 one of their most
remarkable properties. The ripples
formed by a pecble dropped into a still
pond pursue their own circular dens:ities
despite the presence of ripples formed
by other pebbles dropped nearby.
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SUFERPOSITION OF PULSES 1IN A SFRING
81293

Film Summary

Crests are produced by hand
simul taneously at both ends of a long
spiral spring. They approach and pass
each other, first at normal speed and
then in slow motion. Throughout the
interval of time during which they are
crossing each other, the total
displacement of a point on the spring
rises to a maximum height which exceeds
their maxaimum individual displacements.
After the crests cross, their motion has
not been changed by their encounter.

Three identical spiral springs are
supported so that a single crest moves
from left to right in one, a single
crest moves from right to left in the
other, and two crests move from opposite
ends in the third. Fulses are started
in all three spiral springs
simul taneously. It is seen that the
displacement at a point on the spring
carrying two pulses is samply the sum of
the displacements of the pul ses
considered separately. After the pulses
cross going in opposite directions, they
remain unchanged in shape and speed.
This is dramatized by comparing what
happens in the spring with two pulses in
it to what happens to the single pulses
in the other springs.

Similar experiments are performed using
the three spiral springs by generating a
crest at one end of one, a trough at the
opposite end of another, and a crest and
a trough simultaneously at opposite ends
of the third. Thas time the
displacements add up to zero momentarily
at the center where the pulses meet, but
later the pulses once again proceed with
their motion wunchanged.

Analogous experiments are shown for
longitudinal pulses in which
condensations and rarefactions replace
crests and troughs.

Concepts

Applied to pulses, the principle of
superposition states that 1f one pulse
alone can produce the displacement y, at
a certain point and another can produce
the displacement y.. at the same point at
the same instant, the combined result is
simply y, plus y., where y, and y» are
algebraic guantities that may bz
positive, negative, or zero. The
meaning of this principle is most
clearly 1llustrated by the experiments
with the three spiral springs in which
pulses . are produced simultaneously.
When two crests meet, a nenWw crest is
created monentarily whose amplitude is
equal to the sum of the individual crest
amplitudes. This is especially clear in
the case or transverse pulses. For the
case of the combination of a crest and a
trough the sum is briefly zero for many
particles near the center ot the spring,
and there 1s no displacement there. The
spring, in other words, is 1nert where
the two pulses meet and cancel each
other.

The term interference is given to the
addition of displacements in obedience
to the principle of superposition. This
term is unfortunate because the pulses
proceed after they cross as if they had
never met; in’ the usual sense of the
word, they did not interfer. Although
we have illustrated the principle of
superposition with pulses going in
opposite directions in a one-dimensional
medium, it also applies to puises and
waves moving in the~same direction in a
one-dimensional media as well. This
ability of waves to cross in the same
medium without permanently damaging one
another 1s one of their most remarkable
properties. The ripples formed by a
pebble dropped on a still pond pursue
their own circular destiny despite the
presence of ripples formed by another
pebble dropped simultaneously nearby.

Film Loo = Summary and Concepts
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REFLECTION OF WAVES IN A SFRING
## FREE END AND FIXED END ##
81295

Film Summary

Reflections of transverse pulses and
waves at a free end and at a fixed end
of a long spiral spring are observed at
normal speed and 1n slow motion. Each
experiment begins with a reflection at a
free end and 1s followed by a repetition
of the experiment with a fixed end.

The incident and reflected pulses from
free and fixed ends are shown for a
crest, a trough, and a combination of a
crest followed by a trough.

Concepts

For transverse pulses a crest is
reflected as a crest and a trough as a
trough when the reflecting end is free.
Similarly, a crest is reflected as a
trough and a trough as a crest when the
reflecting end 1s fixed. This i1mplies
that the phase change on reflection is
zero at a free end and 180 degrees at a
fixed end.
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SUPPLEMENT TO CHAPTER
INFORMATION ON WAVE DYNAMICS

In class discussion of Chapter 15, the question of
why a wave moves as it does should be avoided insofar
as possible. At this stage, students do not have the
necessary preparation in mechanics to talk about
even the simplest cases. However, the following
discussion may be helpful as background information
for the teacher.

As the wave shown on the rope in Figure 1 pro-
gresses to the right it passes the point P.

The piece of rope at P will rise and then fall. When
it falls back to its original position it suddenly stops.
Why doesn't it overshoot and go below its original
position?

There are two possible answers to this question.
One is that no point on a real rope or tube which is
transmitting a wave stops suddenly. All real waves
have rounded corners. The particles of the tube are
only gradually accelerated and brought to rest. This
is only a partially satisfactory answer since the more
flexible the spring or tube used, the more nearly the
“corners” of a wave can be sharp. However, dis-
cussion in class of this point can be avoided by using
as examples smooth waves without sharp corners.

The second answer is found through considering
the mechanics of a wave as it passes some point P.
In Figure 2, consider the small bit of rope, Ax long,
about the point P. We assume that the tension in the
rope is T (newtons). That means that the rope is
pulling the point P with a force T both to the right
and to the left, as shown in the inset of Figure 2.
The net force on the bit of rope at P is zero. By
Galileo’s principle of inertia, the piece of rope must
be standing still or moving with a uniform velocity.
Since the wave has not yet arrived at P we know that
it is standing still.

Next let us consider a later time when the pulse
has progressed to the point shown in Figure 3. Here
the rope at P is stretched somewhat more than in
Figure 2 and hence has a tension 7’. We will avoid
for the moment how T is related to T, the tension in
the level part of the rope. Again we see in the inset
that the piece of rope at P is pulled just as much one
way as the other and again the point P must be at
rest or in uniform motion.

Referring to Figure 4, we see the wave drawn at
one time and dashed at a time r later. During this
time the wave has moved a distance S and the point P
has moved up a distance D. The velocity of the wave

Fig. 1

Fig. 2

Fig. 4

Y

—_—
P 2
AXx
T T
-~

T.f
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is thus v = 5/t and the point P is moving up with
a velocity D/t = V. We easily divide these two

; D ;
equations to get V = v 3¢ and since D/S = tan 4,

we see that ¥V = vtané. Furthermore we can see
that all points along the front slope of the wave are
moving with the same velocity V. Similarly, if the
pulse is symmetrical, all points on the back slope of
the pulse are moving down with the velocity V.
The point P in Figure 3 is thus moving up with a
uniform velocity ¥ as it must since the net force on
it is zero.

In Figure 2, the point P was at rest. At the later
time in Figure 3 it was moving up with a velocity V.
Clearly, at some intermediate time it was accelerated.
This acceleration occurred while the corner was pass-
ing point P. In Figure 5, the wave has just arrived
at the segment of rope at . The inset shows that the
bit of rope is being pulled to the right with a force T.
Now, however, the rope to the left does not just
“‘cancel out” this force, If we are dealing with an
idealized wave where the point P moves only up and
down (this is an idealization because there is usually
some longitudinal motion on a real rope), then
T’ cos @ = T since the horizontal components of the
force must cancel out. The vertical component of the
force is T sin 6 which is also equal to 7 tan 6. This
vertical component of the force is the one that jerks
the rope at P from rest into motion when the wave
goes by. Of course, if we consider a small enough
bit of rope this force does not act for long. It acts
only long enough for the wave to progress the dis-
tance Ax.

When a force acts on some object for a short time,
the impulse method (see Part III) is usually a con-
venient way of treating the problem, The change in
momentum of the object equals the product of the
force on the object and the time the force acts. The
rope at point P starts from rest, and under the action
of the force Ttan 4, finally acquires a velocity
V = ptan §. Its initial momentum is zero; its final
momentum, mass X V. Now the mass of the rope
at P is zero, but the mass of the bit of rope of length
Ax is u Ax where p is the mass of the rope per unit
length. (If the whole uniform rope has a mass M
and a length L, then u = M/L.) Its change in
momentum is thus

change in momentum = mass X V = pAxptané.

The impulse acting on this bit of rope is a force
T'sin@ = Ttan § (see Figure 5) acting for a time
Ax/v which is just the time it takes for the corner of
the wave to pass the bit of rope Ax long. Finally,
then

Ttan 0 Ax/v = p Axvtan 8.

A-14

Canceling, we have T/v = uv. Notice that Ax can-
celed out, which means that it didn’t matter how long
a little piece we considered. Since our choice of Ax
was arbitrary, this must happen. Rearranging the
last equation we find

This shows that the velocity of a wave is greater when
the tension is greater, and smaller when the mass
per unit length is greater. The fact that the angle #
canceled out of the expression is important, for if it
had not, waves of different shapes would travel with
different velocities, and a wave with a complicated



shape involving many values of § would not maintain
its shape as it traveled along the rope.

Once we have treated quantitatively the forces
acting on the front corner of the wave, we can easily
see what happens at other points. Figure 6 shows a
time when the point P is the top of the wave. The
inset shows the forces acting. Apain, the horizontal
components cancel out. There are now, however,
two vertical components 7" sin 8. The impulse given
the bit of rope at P is just twice as great as at the
front edge of the wave. The bit of rope P is therefore
not only stopped but turned around and given a
velocity ¥V downwards.

Then as shown in Figure 7, the point P comes to
the back corner where a force 7T sin 6 acts on it in
such a direction as to stop the bit of rope at point P.

The impulse is just the right amount to bring the bit
of rope to a dead stop without overshooting.

We have considered the mechanics of the passage
of a particularly simple type of wave. Net forces on
the particles of the rope occur only at the corners.
Here, since they act on small bits of rope they create
violent accelerations. The accelerations last only for
very short times and occur in such a way as to give
rise to smooth wave motion. A wave pulse is, in
general, curved smoothly. The forces which act on
bits of rope are greatest where the curvature of the
rope is greatest. A complete treatment of wave
motion along a rope involves the solving of partial
differential equations (see, for example, R. A. Becker,
Introduction 1o Theoretical Mechanics, Chapter 15),
and we will not consider it here.

A-15



WAVEE IN ONE DIMENSION Page —-1-

A convenient medium for studying the property of waves in one dimension
"5 the "slinky"” spring. In this exercise it will be used to answer some
48ic guestions concerning the motion of a single wave pulse.

A. TRANSVERSE WAVES IN A SPRING

Flace the slinky on the floor and extend it so that it is under tension.
About 3 meters stretch should be sufficient. Be careful not to over—-extend
the slinky, since this causes permanent distortion.

1.

Generate pulses by giving the slinky a flick at right angles to
the length of the slinky. Can you make different pulse shapes?
Describe how you make different pulse shapes.

How fast do the pulses travel? Estimate the speed of the pulse.
To do so, make rough estimates of appropriate quantities and
calculate a value.

Can you change the pulse speed? What factors seem to affect this
particular quantity?

Observe carefully what a specific point on a slinky does as a
pulse goes by. Compare your observation with Figure 22-2, page
450 of your text.

What is simultanecusly happening to particles of the slinky at
the front and rear portions of the wave front at any instant of
time. How does Figure 22-3 and Figure 22-4 relate to your
observations?

Make a wave pulse having a shape as shown

at the right. Observe its propagation and %..

then make your own sketches, corresponding - o N,
to Figure 22-2 and Figure 22-3 showing —

what particles of the slinky along the

pulse shape are doing as the pulse moves first a small distance
from left to right, and second, a small distance from right to
left.

You have surely noticed that the wave shape changes as it moves
along the slinky. What do you think is happening here? How
would you expect the wave pulse to behave if the slinky were
suspended so that it didn’'t touch the floor? What if it were
suspended in water?

Make further observations of a single point or particle of the
slinky as a pulse goes by from right to left. Sketch the up and
down deflection of a particle as a function of time.

While observing the propagation of pulses on the slinky, you may have
noticed that the wave does not vanish when it arrives at the far end. If
u have noticed what happens, pat yourself on the back for being
sservant. We have deliberately not focused attention on this phenomenon.
We will return for a detailed study at a later time.
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If you were asked, could you explain, define, or contrast the
following:

"medium" of propagation?

"transverse" wave?

propagation velocity vs particle velocity?
amplitude?

B. "COLLISION" OF WAVE PULSES: SUPERPOSITION

For this part of the experimentation, you and your partner will shake
pulses at opposite ends of the slinky.

1'

Make a study of what happens when two wave pulses sent from
opposite ends encounter each other at the middle of the slinky.
Try numerous combinations: pulses with same and opposite
directions, different sizes, shapes, etc.

Sketch your own pictures of what e e
you see happening, instant by . S TR
instant when transverse pulses

such as those shown at the right

pass through each other. Does the

pulses assume their original shape /;:;h
after having passed through each
other? Compare your observations ﬁét{f
to Figures 22-5 and 22-6.

Figures 22-7 and 22-8 show the superposition of pulses of
opposite deflection. How can one explain the cancellation of the
two pulses, making the slinky straight at the instant when they
overlap? Why does the slinky look fuzzy and not like a slinky at
rest in the fifth frame? How does Figures 22-6 and 22-B
illustrate the resultant shape of the pulses as they pass through
each other?

On a separate piece of paper apply the superposition principle to
the nonsymmetrical pulses in Figure 22-9. Work out each stage
without copying. How do you account for the fact that only one
point on the slinky, the center point marked by the dashed line
Py is never deflected and is thus always at rest?
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c.

Have your partner hold one end of the
allowing the end to move when a pulse
pulse down the slinky and observe the
does the orientation of the reflected

FPage -3-

REFLECTION AND TRANSMISSION

slinky firmly without
arrives. Send a transverse
reflection carefully. How
pulse compare to the

orientation of the incident pulse? Examine Figure 22-10
carefully. Do your observations agree with the effects shown?
Does the reflected shape make sense in terms of your present
knowl edge of wave behavior?

Let us now make one end of the slinky as free as possible by
connecting 3 or 4 meters of thread to one end which is needed to
keep the slinky stretched. Study the reflection of a transverse
pulse from the free end. How does the reflected pulse compare
with that observed from the fixed end? Does your observations
confirm that which is shown in Figure 22-137

Secure a heavy, smaller diameter spring securely to the slinky.
Flace the slinky-spring combination under tension by stretching
the combination 4 or 5 meters. What happens to transverse pulses
initiated on the slinky as they arrive at the boundary with the
spring? What happens to transverse pulses initiated on the
spring as they arrive at the boundary with the slinky?

Do your observations confirm the effects exhibited in Figures
22-11 and 22-127 Does the reflected upside down pulse in Figure
22-11 and the reflected right side up pulse in Figure 22-12 make
sense in terms of what you observed when a pulse was reflected
from a fixed and free end as observed in parts 1 and 2 above?

GOSH! THAT f
WATER LOOKS
DEEP/

A PEEERT!
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Chapter 22 Construction Worksheet

The drawings below represent coil springs having end points separated by 5 meters.
Under these conditions, waves travel at the rate of 10.0 meters per second in the coil
springs shown below. (Assume the speed remains the same in both the heavy and light
coil.) Make a drawing to show the shape, position, and direction of travel of the
wave or waves that will be moving along the coil spring io.h seconds) later than
shown in each of the drawings below.

Free ; : U,//if/] Free

1. | 1 T [ -
Fixed | Fixed
2. . - i i Y %
I
3. Fixed | . . Fixed
Heavy Spring Light Spring :
Free ////fﬁﬁﬁh\\ | | Fixed
Lie w— 3 — g &
Light Spring ! Heavy Spring

The following drawings represent coil springs with two waves approaching each other.
Make a drawing (in the marked area) to show the shape of the combined wave resulting
from the two waves as they are moving through each other. At this time, one of the
waves should be right over the other.

5.

ol i, e
i < 30003 i

L

[

%o /}_-I | |
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10. The diagram below shows two wave pulses in a stretched string, starti at t = 0.
The pulses are moving in opposite directions each with a speed of 1 t::?sec.
Sketch the shape of the string at t = 1, 1.5, 2, 2.5, 3, and 4 sec.

t =0

em
$ =1 el | i Y 1} [ i : st | l
t = 1.5 e : S sty gy gy
t=2 i i | i i g | | 1 | f F e | |
t = 2.5 i | y i | | Y i T | i \
w3 i i i i ] J e i iy T i




Chapter 5 Construction Worksheet

The drawings below represent coil springs having end points separated by 5 meters.
Under these conditions, waves travel at the rate of 10.0 meters per second in the coil
;prings shown below. (Assume the speed remains the same in both the heavy and light
coil.) Make a drawing to show the ghape, position, and direction of travel of the
wave or waves that will be moving along the coil spring (0.4 seconds) later than
shown in each of the drawings below.

Free - . R z A Free

1. | ' 1 T i

Fixed . — | /——’\F" Fixed
20 & 5 s v %
) " I

" : . -~ Fixed
I
Light Spring -/" <
preatie Lo grbe

., Fixed

N

v

48
Heavy W

.’ . t——p

. ih:.,..‘._w -,n‘:;‘-w b
The following drawings represent coil springs with two waves approaching each other.
Make a drawing (in the marked area) to show the shape of the combined wave resulting
from the two waves as they are moving through each other. At this time, one of the
waves should be right over the other.
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10. The diagram below shows two wave pulses in__,.a-‘sffétched string, starti at t = 0.
The pulses are moving in opposite directions each with a speed of 1 i-;ﬁsac.
Sketch the shape of the stringat t = 1, 1.5, 2, 2.5, 3, and L sec.
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Chapter 22 Test wlyr Name

Principle of Superpositiom

Y O |———
(&H) e o
-2
_3 L
Show the shape of the slinky at t = 2 sec
3 s o = —
1 S =
JpEd
7 o e et S T S S + —+— Y (C.H)
(em); .l s 8 2 /6 20
-1 —_— e
-3 | == Erli
Show the shape of the slinky at t = 3 see
3
3 S ] e e
i = T
¥ O — | X (c#)
(0 R T PO b 12 /%
-2
-3 S Bh=
Show the position of point A as a function of time
3 e — = =
z N Jpe 2 Chm TN P oo TR TR I L oS SR T T s
!
Y b; ——t— i (SEC.}
feny T Lt e i Wi 20
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Principle of Superpositiom
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Show the shape of the sliaky at t = 2 sec
i % R P
J L2
o [ 7
0 ' ' | 13 ‘ P —t X (c#)
L 158" & 81 1) 76 20
-1 - — e ———
_3 —————————
Show the shape of the slinky at t = 3 see
S

3 e

' D % C

. I o ol

[ P — A ‘ +——% —p——) X (CH)
i j A 12 ot /@ 20
-2 ' - W N OO T (0 R ey U T
-3 — ————

/ /
- ;
/ ; 2
. {- } = e
-] [k e /e




@) CHAPTER

The line X represents the boundary between two
dissimilar springs. A pulse 1s shown appreoaching
the boundary.

2

wWhich one of the following skelches shows a
possible configuration of the system shortly after
the pulse reaches the boundary?

(A)

- .-

(B) X

......

(D)

-4 -

(E)

X
[
!

Which one of the following properties of a wave
decreases as the wave moves along a spring?

%) amplitude
(B) wavelength
(C) speed

(D) frequency E =

(E) period

The waveform shown below was produced by a!
superimposed waveforms.

Which of the pairs of waveforms shown below
superimposed could produce the above wavefol

{A) (B) A
= f!/' \ g, ;f/‘”‘s\i
|~ i
N W 1
T Sl ¥ i B
» 0§ \,f#
|
(© () 3
TN A
b : A
o /4 ! bR 7
NG LA o
N Fy \‘\_“__
L . N
i |
(E)
] (/\\
/ = 1S
5% Y qx




TEST CHAPTER |  =2= (Al leevst

5 The diagram below shows a portion of a rope in which
a disturbance XY travels in the direction of the

B The diagram below shows a transverse pulse travelling Ao
/4 along a heavy rope toward its juaction with a lighter
' roge.
—
o
y| Ii
Fﬂ = il i LI L o S T If the disturbance XY meets a similar disturbance
: ; ; : travelling in the opposite direction, which one of
Which of the Follow1ng diagrams best illustrates the the following configagations of the éope could not
ropes at the instant that the reflected pulse again appear? i
passes through its original position marked X?
(A)
T
(A) | L’L\
it 2 5\\ (
B)
s N >
(B) N

i L A
/“
(© L L’j

)

et i WO e W e

6 The diagram below shows a portion of a rope in which
a disturbance XY travels in the direction of the
arrov.

(D) | { 45/51\K

A=

The instantaneous velocity of a particle of the rope
at point P is best represented by which one of the
following vectors?

@ (8 (© ) (E)
v R el Shetith N
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The diagram below shows a pulse travelling to the Q Two ropes XP and PY are joined together with a knot
right along a light rope attached to a heavy rope at P. An up\rargl pulse such as that shgwn in the first
which is in turn attached to a light rope. The figure (Pulse) is passed along the string to the knot,
first and third ropes are identical. where part is transmitted and part is reflected.
F.\ JL—
A short time later the ropes will appear most like Pulse
e — Shortly after this, the two pulses leaving the knot
@} -~ Vo I\ appear as shown in the second figure (After).
L
a— -—— —
(B) _~ ~ X x A
> ¥
P N
—
(c) -~ v I\ After
A - " {a i
e =5, The conclusion to be drawn from the figures is ‘that
Tt # .
— (A) 'the pulse arrived from X, and XP is denser than PY
—
(B) _~\ - v, (B) the pulse arrived from X, and XP is less dense
- el than PY
{C) the pulse arrived from ¥, and XP and PY are
equally dense
(D) the pulse arrived from. ‘E, and XP is leu dense
than PY A s e L
@ the puhe arrived from Y, and XP is denser than PY
» ? “'Hl;
The wavelength of a transverse wave train is 20 cm s, 8w b g0, i:'f
and its amplitude is 4 cm. At a point P the ' ‘i Rt s
displacement is -4 cm. At the same instant, at =5 265
point Q, 25 cm away in the direction of propagation 10 When a transverse wave traveuinq on a string reaches
of the wave, the displacement is tj\_q‘ juuﬁ on with a lighter ltring. the wave is . -
& o (A) tétally reflected at the junction o
w : b | " 1
TR T R : (8) partially trananitted with a change in p!m“
€ -2 cm | 0N chnismitted Torning ‘standing wave ﬁattcm in
: | ; the ligh;gr s:rinq £ _
(D) 4 cm : o

(D) reflécted sd’ al to fornt a nodé at the junctlcn

(E) =4 cm @
partial_ly reflected without a change in phase



PSI/PSSC Physics

Unit 9: INTRODUCTION TO WAVES: ANOTHER MODEL

Previous units have given us some good ideas with which we can
begin to describe the behavior of reflecting and refracting
light. However, a simple particle model of light was not
adequate to correctly describe how light behaves in all as-
pects. Again we must ask, what is the nature of light if it
is not like a particle? A good next guess, for reasons which
will become apparent in the reading, is that light behaves
like a wave. In this unit, we will take a leook at how the
simple wave behavior of a pulse on a spring can correctly
predict many features of light. Then, in later units, we
will refine the model and see that the wave model predicts
some properties of light that most of us never see in or-
dinary circumstances.

Objectives

l. For a spring connected either rigidly to a wall or to
another spring, be able to determine the following when
a specific height pulse is created on the spring:

a) the height of the reflected pulse (and whether it is
upright or inverted) )

b) the height of the transmitted pulse (and whether it
is upright or inverted)

c) if connected to a second spring, whether the pulse
velocity is greater or less than on the first spring.

2. Be able to describe in a brief paragraph whether and why
the simple one-dimensional wave model correctly predicts
the behavior of light as it relates to (a) superposition
of beams, and (b) the partial reflection and refraction
of a light ray at the interface between two different sub-
stances.

Copyright (c) 1973 by the Massachusetts Institute of Technology
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Suggested Procedure

1. Read Chapter 6 of the text.

2. Read through the problem examples and then complete the
guided problems.

3. Do the following exereises: X, 3, @, 7, 8, 0, 12, 15, 186,
1T,

(:) Do the lab exercise(s) suggested by your instructor.
4. You may have at home a "slinky" or a long rope (like a clothes-
line). Both of these objects are excellent wave carriers,
and if they are available to you, you might try some inves-
tigating of wave pulses on your own.

5. Take the unit test when you feel that you are ready.
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Guided Problems

1. Describe in a brief paragraph whether the behavior of pulses
traveling on a spring made of a light and a heavy section simul-
ates the behavior of light as it passes from one substance into

another.

Guided Solution: a) When a pulse is sent down one of the springs,
will there be a pulse transmitted onto the other section of
spring?

b) Will there be a pulse reflected from the junction of the two
sections of the spring?

c) When a light beam is incident onto a surface of another trans-
parent medium, do we see both a reflected and a refracted
beam?

d) On the basis of (a), (b) and (c), does the behavior of a
pulse interacting with the junction of a two-section spring
correctly simulate the behavior of the light as it strikes
the surface of a transparent substance?

2. A spring is made up of two sections of equal length. The second
section is more massive than the first. A single pulse is sent
along the first section of spring.

i) After the initial pulse encounters the second section,
there will be a pulse which continues onto the second
more massive section of spring. Will this pulse be higher
or lower than the original pulse?

ii) Will this pulse be moving faster or slower than the original
pulse?

iil) There will be a reflected pulse. Will it be inverted or
upright compared to the incident pulse?

Guided Solution: a) With a pulse traveling along a two-section
spring, we know that there will be both a transmitted and
a pulse.

b) Each of the pulses described in (a) is always
in height than the original pulse. From this,
you can answer part (i).

c) A pulse travels on a massive spring than on
a light spring. From this result you can answer part (ii).

d) What is the general rule for determining whether a reflected
pulse is right side up or upside down?

(cont'd)
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e) Apply this rule to answer part (iii).

Problem Examples

L.

Describe in a brief paragraph whether this superposition of
pulses on a spring correctly predicts the behavior of two
intersecting beams of light.

Solution: As can be seen from the illustrations in the text,
the shapes of individual pulses after they have "collided"
on a spring are the same as their original shapes. (Although
during the "collision", the shape of the combined pulse often
gets quite complex.) We observe in everyday life that two
light beams crossing each cther do not appear to cause any
change in either beam. Therefore, for the superposition
(or collision) of light beams, our wave model seems to des-
cribe the non-interaction of light beams with each other

very well.

This is problem number 19 of chapter 6. The figure shows a
pulse moving along a rope which has sections of different den-
sities. Diagram (b) and (c) show the same rope at equal in-
tervals of time later. Where are the junctions of the different
densities of rope and what are the relative densities of the

various sections of rope?

- i

Solution: First of all, we recall the general rule for determin-
ing whether a reflected pulse is right side up or upside down.
If the pulse is reflected at a junction with a lighter spring,
the reflected pulse is right side up, and if it occurs at
a junction with a heavier spring, then the reflected pulse
is upside down. (To make this easier to remember, perhaps
you might recall that in the "extreme" case where the end

of the spring is rigidly fixed -- that is, connected to a
very, very massive body - the reflection is always upside
down.

Now, by comparing diagrams (a) and (b), we see that the trans-
mitted pulse in (b) is stretched out, which means that its
velocity is greater. If the velocity is greater at the right
side, we know that the density of the rope must be less at

(cont'd)
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the right end than at the left end. 1In (b) we know that the
wave on the left is moving toward the left. Therefore,

in (b), the two pulses going in opposite directions tells

us that the first junction of the ropes of different density
must be somewhere between the pulses to the right of where
the lone pulse is in diagram (a).

Let's look at diagram (c). The reflected pulse on the left
has moved farther toward the left without changing shape, so
that pulse could not have encountered a change in rope den-
sity. But something has clearly happened on the right. Now
there are two pulses where before (in b) there was only the
long pulse moving toward the right. The height of each of
these two new pulses is less than that of the pulse on the
right side of (b). We are led to deduce that the pulse on
the right of (b) has divided into the two new pulses. Since
this new pulse moving to the left is inverted, the junction
in the rope must be such that the rope becomes more dense

as we move to the right. This assumption is confirmed by
the narrower shape of the far right pulse which indicates
that it is moving more slowly. (A more dense rope will
cause the pulse to travel more slowly and thus make its
shape appear more narrow.)

e
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This second change in density must be between the two
pglses on the right of diagram (c) and in front of the
right hand pulse in diagram (b).

To sum up, the "junctions" (or changes in density) in the
rope are as shown above. Starting from the left, the rope
is dense, then less dense and then more dense again (see
illustration above).



