Chapter 3 Motion in Three Dimensions 1'7‘%5Z

If the world were one-dimensional and all objects moved in straight line paths zll
the time, you would now know almost everything there is to know about motion. But
such is not the case. The physical world is three-dimensional and objects move
most generally in three—dimensional paths., For the physicist a formalism is
needed to describe motion in more than one dimension, and it is this formalism
that comes under study in this chapter.

The mathematical entity most useful in deseribing motion in two or three dimensions
is the vector, for the vector can give us information not only about magnitude of
gquantities but also about their direction. In one dimension, there are only two
possible directions in which an object can move = forward or backward. Thus
positive and negative numbers suffice to describe motion in one direction. But

in two or three dimensions there are an infinite number of directions in which a
body can move and a new mathematical machinery (vectors) must be brought to bear

on the problem.

Actually, we will not be working in three—dimensions in this chapter, but rather
in two=dimensions. This is okay, because all the conceptual problems which arise
in three-dimensions arise with much less fuss in two dimensions as well. In many
cases, three—dimensional problems can be made into two-dimensiona problems, and
there is the added advantage that all two—dimensional problems can be diagrammed
on a piece of paper without the need for three—dimensional models.

We will also study a particular kind of motion, namely the case in which the path
of an object traces out a perfect circle. We will investigate the conditions
necessary for circular motion with emphasis on the forces which must act on a body
to cause it to move in a circle.

Finally we will see that Newton's Law is useful when two or more forces act on an
object in different directions.

Performance Objectives
Upon completion of this chapter, you should:

1. Be able to express position in a plane by the use of a fixed reference point
and a vector.

2. Be able to deduce the vector which represents the displacement between any
two positions. :

3. Be able to construct a vector egual to the sum of two or more given vectors.
L« Be able to construct a vector equal to the difference between two given vectors.

5. Given any vector in a plane, us both:
a. Trigonometry, and
b. a scale diagram to determine two mutually perpendicular components.

6. Be able to construct a vector equal to the product of a scalar quantity times
a vector.

7. Be able to determine the change in velocity vector and the acceleration vector
for the motion of a projectile.

8. Given the velocity at two different time intervals, be able to determine the
change in velocity and the acceleration.

9. Be able to calculate the vector acceleration for an object moving in a circle.
10. Be able to state the frame of reference from which one analyzes a problem.

11. Be able to apply Newton's laws in situations where:
a. The force is not in the direction of motion, and
b. There are two or more forces acting in different directions.
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1. Are you familiar with the basic trigonometry functions? B

If so, complete part "a” only. If not, do part "b’ and
then "a’.

a. For those in the know.

a

(1) sin A= ______ {(2) cos A= __
(3) sin B= ______ (4) cos B = __
(S) tan A = g {(6) tan B = - -

e A %) v
In summary:
The sin of an angle is the ratio of to L
The cos of an angle is the ratio of _ to -
The tan of an angle is the ratio of to "

b. For those needing help.
(1) Turn to pages 79 through 86 in T.T.& S. for help. and/or
(2) Secure programmed instruction guide from your instructor. and/or
(3) Secure Trigonometry in Science—-An A.VY. Learning Resource Prog.

2. Read: Section 3-1 Position, Distance, and Displacement page 1
Section 3-1.a Vectors page 2
Section 3-2 Graphical Methods of Addition and Subtraction of
Displ acement Vectors page 3

Note...Your instructor has rewritten the above listed sections in
hopes that it will provide needed information. Do inform your
instructor of any areas that are unclear so that corrections
can be made.

a. What is a vector guantity? A scalar guantity?
b. How many bits of information does each convey?
C. When can vector quantities be considered equal?
d. Why must we learn vector algebra, another form of mathematics?

Note...Study Notes titled THE BUESTION OF DIRECTION: VECTORS gives
information to help one understand the need for vector
algebra. :

3. Read items one through seven on sheet titled "VECTOR ALGEBRA". Once
completed, ask instructor to clarify any areas of uncertainty.

4. Complete items A, B, C on sheet titled "VECTOR PRACTICE PROBLEMS". You
need only work enough problems until you understand the procedure. When
you do understand, go on to the next section. Be sure to make neat,
precise drawings using a sharp pencil. Sloppiness will not be tolerated.

e



5.

6.

8.

9.

10.

11.
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Problems: page 43: #1 #2 #3
page 45: #4 #5 #7
page 446: #9

Read: Section 3-3 Resolving Vectors Into Components page 5

Can you think of any reason why we will be especially interested in
resolving vectors into two components, each at right angles to each
other?

Ask your instructor to demonstrate how an object moving in a certain
direction is affected by a force exerted perpendicular to the original
motion.

There are numerous ways to find the resultant vector (the vector sum of
two or more vectors).

(1) The method you will use here will be finding the x and y components
of each vector, sum each component, and then find the resultant of
these two components. Further information can be found in section
10 on the sheet titled "VECTOR ALGEBRA".

Section D on the sheet titled "VECTOR PRACTICE FROBLEMS" provide

some problems in resolving a vector into its x and y components.

Section E provides practice problems dealing with adding 3 vectors

using this method.

(2) Another method is using the cosine and sine laws. *A
You may remember using these to solve for unknown
guantities in non—right angle triangles.

Sine Law: ar/sin A = b/sin B = c/sin C
Cosine Law: c"2 = a*2 + b2 — 2ab cos C R

(3) A third method involves the use of a calculator. If vyour
calculator can convert polar coordinate notation to rectangular
coordinate notation, ask your instructor for assistance in how this
is accomplished (if you have never done it before).

(4) Complete enclosed work sheet titled VECTOR ADDITION USING X-Y
COMPONENTS.

Problems: page 46X #10 #11 #12
page &2: #37

A hunter leaves camp and travels 10-km south, then 10—km west, and then
returns to camp by traveling 10-km north. {Yes the hunter is back in
camp.) Upon arriving back in camp, the hunter shoots an animal.

a. What animal (s) was/were shot?

b. Explain.

Read: Section 3—-4 Multiplying Vectors by Scalars p—4& (in text)
Section 3-5 Vector Changes & Constant Acceleration page 7

Experiment: MOTION OF A PROJECTILE {(Experimental notes provided.)

S
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i2Z. Problems: page 4%9: #13 #14 #15 #16
page &2: #38

13. Read: Section 3-&6 Changing Acceleration page 50 (in text)
Section 3-7 Circular Motion page 52 (in text)

a. Why is it more desirable to use the equation v = 2T R/T rather than
v = Ad/At when analyzing uniform circular motion?

b. It is stated that there is a change in velocity. For this to be the
case, there must be a change in displacement. What displacement is
changing and how is it changing?

c. Justify that a = 2wv/T follows from v = 2TR/T.
Trouble? Ask instructor for assistance.

14. Problems: page S52: #17 #18
page S4: #19 #20 #21 #22
page 62: #39 #40 #41 #43

15. Read: Section 3-8 Frames of Reference page 54

16. A motor propels a boat ‘across’ a river at 8.0 km/hr (i.e., the boat is
always kept headed at right angles to the stream). The river is flowing
at 6.0 km/hr with the distance across the river being 0.20 km. (You
must assume that the speed of the current is the same from bank to
bank.)
You may if you so desire, draw accurate scale diagrams and determine all
answers from them. Or, you may make sketches and determine the results
using algebra and/or trigonometry.
a. What is the resultant velocity of the boat?
b. How long did it take to cross the river?
c. How far did the boat land downstream from the starting point?

d. How long would it take to cross the river if there was no current?

e. What direction would you head the boat if you wish to go directly
across the river?

f. How long would it take to cross the river if you went straight
across”?

g. Why is your answer in ‘f° different than that of ‘b’'? It should
be!

h. If you were swimming in a river and were having trouble making it
to shore, in what direction would you head to reach shore? Why?

i. Now that you have completed this exercise, show your instructor
your neat, organized work.

17. Problems: page &3: #44 #a7 #48 #49
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18. Read Section 3-9: How Forces Add: The Net Force page 57

19. Problems: page 58: #26 #27 #28 #29

Z20. Investigation: CENTRIPETAL FORCE (Investigation notes provided.

Z21. Read: Section 3—10 The Vector Nature of Newton’s Law page 58 (:::::)

a. In Section 3-7 we find that a = v*2/R and a = 4 "2R/T™2. Knowing
that F = ma, then for uniform circular motion:

F = and =

22. CentriFetal (F.,.) force is defined as that force needed to make an
object go in a circle as shown at the right. CentriFugal (F‘f)
force has been defined as that force eqgual
in value and opposite in direction to the
centriPetal force and acts on the ball as
shown. Your instructor does not agree
with this. He thinks that the centriFugal
force (as defined) is a Fictitious force
as centriFugal force is spelled with an ;

F’. He also thinks that centriPetal string O
force (as defined) is a real force as Fép }

—r

~

centriPetal is spelled with a P* which

represents the Pull on the string which

makes the object go in a circle. What are

the correct and what are the incorrect

statements just listed and the rational to ( ,
support your thinking.

23. Problems: page &60: #30 #31 #32 #33Z #34 (Info for #32 in text.)

24. Complete written exercise. When completed, have it evaluataed.

Thought for the chapter: Texans wear 37.853 liter hat

Y S0sH! EVERYTHING
THAT GOES UP
HAS GOT TO
COME DOWN
SCMETIMNE!

-

H? ON:TPOU:ANO
AND' ONE..
OMET%OUSAND

Mistibuted by King Fastares Brndicais
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ANSWERS Chapter 3

{a) (1) a’c (2) b/c (3) b/c (4) a/c (3) asrb (6) b/a

Sine is the ratioc of the side opposite to the hypotenuse.

Cosine is the ratio of the adjacent side to the hypotenuse.

Tangent is the ratio of the opposite side to the adjacent side.

(a) vector: represented by both magnitude (including units) & direction
scalar: represented by magnitude (including units) only

(b) vector - two, scalar — one

(c) when both the magnitude and direction are equal

(d) See study notes THE RUESTION OF DIREBTIDN _gECTORS

(1) 4 pairs (&) VI = Vo = —(v2 = ;:)
(2) 2V/% horizontal 45° up

(3) 2 meters North (7) 7.8 meters s 11° w
(4) 2 blocks south (?) 9.72 meters

(1)¢a) Sm (b) B.&7m (2)(a) S.66 m (b) -5.66 m (3I) 10.67 m, 3I.00m

(4) 11.07 m at right 15.72° up

(10) (a) 7.1 km (b) 7.1 km (11) -B&.6 km/hr N, =50 km/hr E (12) O
(37)¢a) 2.12 cm N 3.3° W (b) B.4B cm N 3.3° W (c) Ans. in b = 4x ans. in
a

(b) Did you say a bear? What about a penguin?

(13) 0.6 cm on Fig. 3-12 which represents 6.7 cm, should be

(14) Reverse velocity vector with tail at same point

(15)(¢1) 0 (2) 1 m/s (3) 2 m/s (4) 3 m/s (5) 4 m/s (16) 10 m/s/s
(38) (a) 0.59 m to right (b) 0.75 m down <(c) 4.1 m/s hor. 68.5° down

(a) see instructor (b)) R is changing in dir only, by 360° in time T
(17) 4.9 (18) S5.A.B. (19) motion along a curved path
(20) (a) 282 km/hr at 135° from orig. dir. (b) 400 km/hr at 180° from

orig. dire.

(21) nothing (22)<(a) 4 times (b) divided by 2

(39) ta) 1.0 m/s at 105° relative to vy (b) 0.35 m/s at 75° deg
relative to ;:

(40) (a) 0.21 em/s (b)) 0.21 em/s right, 0.21 em/s down (c) 0.30 cm/s
down 459 left

{41) (a) B3 m/s/s (b)) B.S5 times larger (43) 0.04 m/s/s

(a) 10 km/hr, straight across 36.9° downstream
(b) 0.025 hr (c) 0.15 km (d) 0.025 hr (&) across 48.&° upstream
(£) 0.038 hr (g) (h) discuss with your instructor

(46) (a) 137 km N 181° clockwise, 344 km - same dir. (b) 411 km/hr N
141° clockwise
(47)(a) 1 m/s 6.4 m/s 3I8.7° away from dir. of travel
(b) 25.2 m 28.1° relative to ?
(48) ta) E 4.5° N (b) 445 km/hr (49)(a) S 25° E
(b) 960 km/hr (c) 240 km
(26) along direction of net force
(27) B m/secs/sec to right
(28) 3.7 Newton to right
(22) 186 Newton perpend:cular to canal on same side as Fo
F=mv?/R = maT2R/TZ
(30) 24 Newton
(31) speed does not change, direction of motion changes toward
direction of force
(32) 0.52 m/sec to left
(33) 0.62 m/sec towards center of circle
(34) (a) string cut - no centripetal force (b) yes



THE QUESTION OF DIRECTION: VECTORS

As soon as we move from one to two-dimensional motion, the problem of
direction becomes important. In most cases of motion along a line,
pairs of terms, such as right or left, toward or away from, up or down,
were entirely adequate to our analysis. We saw in motion along a
straight line path in chapter 1 and Z that it was convenient to call
one direction positive and the other negative, for in doing so the
kinematics equations could be made to take direction into account in a
consistent and useful way.

But the matter of direction is a little more troublesome for an object
moving along a two-dimensional path. For example, if you look from the
side at a person riding on a ferris wheel, you will see that he
successively moves through every combination of right-left and up-down
motion. Something more, therefore, is needed than the plus and minus
sign convention to allow us to deal with such cases easily.

The first step is to be sure from now on that whenever we encounter a
physical quantity - speed, force, energy, or whatever - we immediately
try to find out whether or not it involves direction. Those guantities
that involve direction are called VECTORS, while nondirectional
quantities are called SCALARS. A scalar quantity can be expressed with
a single number. OFf the quantities we have used, distance and speed
are examples of scalars. In response to the gquestions, "How far did
you travel?" and "What was your average speed?", the answers, "320
miles” and "250 kilometers are correct answers. But 275 kilometers is
not a complete answer to the question, "At the end of the first day of
driving, where were you from home as the crow flies?" The kind of
response needed in this case is something like "250 miles northwest".
Direction (northwest) as well as magnitude (250 kilometers) must be
given for vector quantities, and this always takes two things
(northwest: means the compass direction of 315 degrees).

To our arsenal of concepts — distance, speed, and acceleration — we
must now add two more: ‘"distance traveled in a given direction", and
"speed in a given direction". There are special names for these two
vector quantities. The first is called DISPLACEMENT: the second,
VELOCITY. Perhaps the best way to grasp the meaning of these is by
looking at examples.

ht[
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I ‘ Fig.2 Vector displacements-
scale: 4.0 units = 1.0 blocks.

Fige 1




Consider the relationship between distance and displacement as you
drive a car around a square city block (vainly looking for a parking
place). S8Starting at intersection A (Fig 1) you drive north to
intersection R, east teo C, south to D, back to A, and then around
again. At point A, the start of your first trip around the block, you
had not yet moved. so both distance and displacement were zero. In
moving from A to B, the distance traveled was one block and the
displacement was one block NORTH. In going from A to C, the distance
you traveled was two blocks, yvour distance away from A was VZ blocks,
but your displacement was V2 blocks NORTHEAST. In otherwords,
displacement describes how far and in what direction an object is from
a specified reference point, not how far the object may have moved to
get there, nor even just how far away it is from the reference point.
In this case your displacement at C would have been the same, even if
after leaving A you had driven nine blocks north, one block east, and
eight blocks south - in any order. You will find that after driving a
TOTAL DISTANCE of four blocks, your DISFPLACEMENT is ZERO.

A symbol that conveys the idea of direction in most cultures is the
arrow. We use the symbol d to represent displacement and symbol d
to represent the distance from the reference point. Thus at
intersection Di d = 1 block while d = 1 block EAST.

Displacement, like all vectors, can be represented by an arrow pointing
in the proper direction and of a length proportional to the distance.
In Figure 2, vector representations are given for the displacement to
intersectionns By, C, and D. The arrow to C is at an angle of 45
degrees to the east-west line, which specifies its direction. We could
call the direction 45 degrees which implies that north is zero degrees
and angles are measured in clockwise direction. We could also identify

the direction as north 45 degrees east or east 45 degrees north. The
arrow AC is 5.6 units long, and since the scale of the drawing is 4.0
units = 1.0 block, this represents 1.4 blocks. Thus we see that the

length and direction of the arrow tells us the magnitude and direction
of the displacement d . We are accustomed to using arrows to suggest
directonj it is in agreeing to let the scale length of the arrow stand
for magnitude that gives this method or representation special
usefulness.

Velocity, as we have seen is also a vector gquantity. It is symbolized
by vV with the arrow on top which distinguishing it from v ., the
symbol for speed. The same system of graphic arrows is used to
represent the magnitude and direction of velocity as was just used for
indicating displacement.

The equation for average velocity resembles that qubavarage speed
except for the fact that vector notation is used: v =A\d7 At. To
illustrate the difference between average velocity and average speed,
we shall reconsider our previous example. This time, however, instead
of driving aroung the block, you are going to walk. You find that each
block is 160 paces and that it takes you Z.0 minutes a block. With
this information we can calculate the average speed v and the average
velocity v as you progress from A to B to C to D and back to A again.
In going from A tqﬁ?: d = 160 paces north, t = 2.0 min., and so the
average velocity v 1s 80 paces/min — NORTH.So far the only difference
is the tacking on of information about direction.

But now the situation changes as vou move from B to C. Considering the
route ABC, we find that since both the distance and the time doubles
(320 paces and 4.0 _min) the average speed remains unchanged. However,
the displacement d does not double since it is given by the straight



line distance from A to C. We can find the value of AC in two ways.
The first is to rely upon the knowledge that the diagonal of a sqguare
is V2 times the length of one side: in this case 160 V2, or 2246 paces
N 45 degrees E. The other method is to add together graphically the
arrows representing the displacement from A to B and from B to C. The
advantage of this approach is that it can be used even in those cases
where the geometry does not permit an easy solution by equation and
where there are more than 2 vectors. Note that you first place the
vectors to be added, head to tail, and then you draw a line from the
tail of the first arrow to the head of the last one. The length of
this resulting arrow (called the RESULTANT) gives the magnitude ot the
vector, and the orientation of the resultant gives the direction. Thus
= 226 paces N 45 degrees E.

Now we gan find the average velocity from A to C. Substituting the
values d = 226 paces N 45 degrees E and t = 4.0 min into v =/Ad/ /L t, we
obtainn qﬁ paces/min N 45 degrees E. This compares to an average speed
along the path of B0 paces/min.

Before moving on, two points should be made clear: (1) Acceleration.
about which we have said little, is also a vector quantity. As we
shall soon see, the direction of acceleration of moving objects is
important information. (2) Velocity and accelration., and any other
vector guantity, camn be handled in the same way as displacement. That
is, velocity vectors can be added to velocity vectors. and so on, but
vectors cannot be mixed, (i.e. velocity cannot be added to
displacement any more than speed can be added to distance).



SOME PRACTICE WITH VECTOR ALGEBRA

BASIC POSTULATE: Two vector quantities are equal if they have the same magnitude and
units, are parallel to each other, and point in the same direction.

This postulate makes it possible for you to move the arrow representing a vector
anywhere you wish in space, PROVIDING YOU ALWAYS KEEP IT PARALLEL TO ITSELF.

ADDITION OF VECTORS [Use which ever is more convenient. ]

—— e a2
1. To add vector B to vector A, connect the tail of B to .
— - - -
The sum or resultant R (R = A + B) is the vector which goes from
to .

2, If the t.a:Ll of B is connected to the tail of A, complet.e a parallelogram which
has A and B as two of its sides. The resultant R is then drawn from
to .

SUBTRACTION OF VEC'IDRS [Use which ever is more convenient. ]

=

l. To subtract B from A change B to -B by reversing its direction, and add -B
to A by one of the rules of addition.

- - —

2. To subtract B from A, connect the tail of B to .
(This is used when the tail of B is connected to the tail of—f.) The difference
— — -— —

Ad (Ad=A -B) is the vector which goes from to .
b
C s - S
A
¥l . /
4
. D i i
— - — A= —> — —_— —
Find A+ B Find B + A Find A - B Find B - A
—_ - — —
Find C + D Find D - C
= —» e
Find A + C Find Ad
—_— —_—
Find A + (C + D)
e =
—_— =t TE A;I;x = D,
Find (A+ C) + D Conclusions: Find AV Find x




VECTOR ALGEBRA i

DEFINITION OF AN ELEMENT OF THE SET OF VECTORS:
A vector is any quantity that has:
a. magnitude b. direction c. {is commutative under addition)
*#%# A vector is physically represented by an arrow. #¥

EQUALITY: Two vectors are equal if and only if they have the same
magnitude and the same direction. Thus a vector can be displaced
parallel to itself.

MULTIPLICATION OF A VECTOR BY A SCALAR: ”//,)f
>
A

If a vector is multiplied by a scalar, ’/;r
the result is another vector whose ol
direction is the same as the given
vector and whose length is altered by
the factor of the scalar.

>y

Ls
k-
P

Multiplication of a vector by "—-1° will turn the vector around.

B

<

—
-B
Note: strange — but multiplying a vector by V-1 will rotate it 90 deg.

The zero vector is a vector of no length and every direction.

VECTOR ADDITION:

=Xy

Any number of vectors can be added by £ ';
lining them up head to tail (like

elephants in a parade). The sum 3

vector is from the tail of the first —

to the head of the last. D+E<F

TWO vectors can also be added using
the parallelogram rule. Put vectors
to be added tail to tail - complete
parallelogram and draw diagonal to
get vector sum.

a. vector addition is associative:

b. vector addition is commutative:

c. multiplication by a SCALAR is distributive over vector addition



VECTOR ALGEBRA =

7. VECTOR SUBTRACTION:
Two vectors can be subtracted by s ‘9\‘
putting their tails together and A \@
going from the head of the vector
being subtracted to the head of the
vector being subtracted from.

This rule makes vector subtraction
the same as addition of a negative
vector. Y s > —

i.e. A-B=A+ (-B)

Note...You can always solve vector addition or subtraction by scale
drawing making measurements to determine answers.

8. ANGLE DEFINITIONS:
a. Positive Angle: counterclockwise from positive x—axis
b. azimuth Angle: clockwise from north
c. Reference Angle:

9. MULTIPLICATION OF TWO VECTORS:

a. The dot product of two vectors is a SCALAR whose value is given by:
p

A*B = IAl * IBI ucusp'

Where.ﬂ'is the angle between the two vectors when their tails are
together.

b. The cross product of two vectors is ANTHER VECTOR whose magnitude
is given by: P -
A X B = Al * Bl # sin @&

uhere.ﬁ is the same as above. The direction of the new vector is
perpendicular to the plane of the two vectors being multiplied.
The new vector points in the direction given by the right hand
rule. <@ - — —

Note: A X B = -B X A

10. VECTOR COMFONENTS (shadows along x

and y axis) - - & Ammmmmmm— - -
a. If given: v. and v, , find v :
_Ib

v = Vv, "2 + v,"2 {magnitude of v) Vy -\7 :

1

A = arc tan v, / v, (direction of v) A 1

i L |

b. if given A and v V., = v cos A - g

Y, = v sin A V&

11. ADDITION OF VECTORS BY COMFONENT METHOD

a. Place all vectors with tails together on the origin of a
coordinate system

b. Resolve {(break down each vector into its x and y components).

C. Add all x-components to find net—x and all y—-components to find
net-y.

d. Add the net-x and net-y VECTORS to find the sum of all vectors.



VECTOR PRACTICE FPROBLEMS =]~

A. Do Problems #1, #2, and #3 by three methods:

2. Head to tail method using scale drawing
b. Parallelogram method using scale drawing
c. Mathematical computation (i.e. not by scale drawing)

Note: All angles are measured counterclockwise from positive x—axis

-

—
1. Add the two vectors A and B

I~ -
A = (10 cm, 920 deg) B = (12 cm, 180 deg)
— —
2. Add the two vectors C and D
- -
C = (B cm, 0 deqg) D = (6 cm, ?0 deqg)
- -
3. Add the two vectors E and F
- =
E = (6 cm, 30 deg) F = (10 cm, B0 deqg)

B. Do Problems #4 and # S by tail rule using scale drawing.

- - =
4. Add the three vectors G, H, 1
-> - -
G = (3 cm, 90 deg) H = (4 cm, 180 deg) I = (6 cm, 270 deg)
- - ->
S5. Add the three vectors E, F, and B.

C. Do vector subtraction by the two methods:

a. Tail to tail using scale drawing.
b. Mathematical computation (not scale drawing).

- -t
6. Find value of A - B
i e
A = (6 cm, 90 deg) B = {12 cm, 180 deqg)
* -.
7. Find value of E - F
-> -
E = (6 cm, 30 deqg) F = (10 cm, 80 deg)

D. Find the x and y components of the following vectors by three methods.

8. Scale drawing (shadow method)
b. Trigonometric calculation
c. Calculator using polar to rectangular conversion (if able)

-

8. Find components of E = (&6 cm, 30 deg)
>

2. Find components of Jd = (12 cm, 180 deqg)
=1

10. Find components of K = (8 cm, 45 deg)

=
11. Find components of L = (9 cm, 70 deg)



E.

Problems

12, 13,

procedure:

VECTOR PRACTICE PROBLEMS

14,

a. Scale drawing as a check.

b.
-
i2. H
-
13. R
-
14, U
S
15. X

= (8 cm,
= (5 cm,
(6 cm,

(& cm,

SUNDAY. JULY 29. 1934

-

£ g
SEg=e

=
‘_J

A

15.6 cm,

10.0 cm,

14.&6 cm,

5.0 em,

13.8 cm,

30 deg)
300 deg)
70 deg)

40 deg)

Component method of addition of vectors.
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3-1 POSITION, DISTANCE, AND DISPLACEMENT

To mathematically describe motion, we must indicate the position of an object at a
particular instant of time. This is usually done by giving the coordinates of the
object once the coordinate lines are chosen. That is, we must choose a particular
location to be the origin of the coordinates.

In the case of Cartesian coordinates, we

must choose particular directions of the 1L+A

x and y axes as in Figure 10-1l. Here we (+2,+3)

see that the position on the plane is -+3 ®

given by two coordinate numbers: the x

coordinate is stated first, the y -+2

coordinate second. The description £'*1+1) =N

becomes complete when we choose a vsdfs audd ol RS

z;itai:ut:rm :.Lnst.ant when the time ¢t T e STl 57 5, a5
] - =1

When an object moves from position A (=2,-1) > .(+3'ﬁ3)

to position B it is said to have been

displaced. If we follow the motion of - =3

the object along the path that it

travels from A to B, we can measure =

the distance it traveled. We can, if Figure 10-1

we so desire, ignore the actual path

and fix our attention on the change

in position. This change in position is called the displacement from A to B as in
Figure 10-2. That is, displacement is the net change in position from the initial
position A to the final position B. It is represented by an arrow running from A
to B. The displacement from A to B will
thus be the same no matter what path is
actually traversed.

The most significant difference between
distance and displacement is that
distance is expressed as a number in
certain units while displacement is a
number of those units plus a direction.
Consider, for example, an automobile
trip from Cleveland to Detroit. The
distance for this trip is a certain
number of miles, a number that could

be obtained from the odometer of the
automobile. To describe the displace- Figure 10-2

ment one must look at the initial

point (Cleveland) and the end point

(Detroit) and describe the difference between these positions. The simplest way to
do this is to draw a straight line from Cleveland to Detroit on a map. The line is
characterized by its length and its direction. Thus the distance from Cleveland to
Detroit is some number of miles, which depends on the particular roads chosen for
the trip, whereas the displacement is a specific number of miles in a particular
direction.

Distance
traveled

Displacement

Figure 10-3
Consider now, two successive motions of
an object. Suppose it moves from A to
B and then moves from B to C (Figure piscapen At
10-3). The distance traveled from A to C ;

Displacement 8+C

Lo

Displacement A+C



is the sum of the distances traveled from A to B and from B to C. The length of
the displacement from A to C is not necessarily the sum of the length of the
displacement from A to B and the length of the displacement from B to C. Consider
a trip From Cleveland to Columbus followed by a trip from Columbus to Toledo (see
Figure 10-4). The first trip is about 125 miles and the

second is about 140 miles, while a straight line distance

between Cleveland and Toledo is about 110 miles. From Toledo
the point of view of displacement, the trip from
Cleveland to Columbus to Toledo can be thought of as
a single trip with a displacement from Cleveland to
Toledo. Thus, in one sense, the sum of the 125-mile Col
displacement and the 140-mile displacement is a 110-
mile displacement, although the.distance traveled is
265 miles. It is thus necessary to develop a type of
algebra that will enable us to deal with quantities Figure 104
having both distance and direction. This type of

algebra is called vector algebra.

' veland

3 -la VECTORS

Some quantities such as mass, time, and temperature do not have direction associated
with them. They are completely specified by a number accompanied by appropriate
units. For such quantities, the ordinary rules of arithmetic are applicable. For
example, a single object of mass 5-kg is equivalent to two objccts, one of mass 2-kg
and the other of mass 3-kg as far as the property of mass is concerned. It is true
that one object (of mass 5-kg) is not identical to the two objects (of masses 2-kg
and 3-kg). But if all we are interested in is the property of mass, then we can
always replace one object by two of the same total mass. Thus we can write the

equation: 5kg = 2kg + 3kg

Quantities that are specified by a number with units and for which the ordinary
rules of arithmetic are valid are called scalar quantities. Quantities specified
by pure numbers, without units, are also scalars.

As seen préviously, a displacement is a quantity that has direction ard is specified
by a number and units. Further, we also saw that displacements are governed by
particular rules of algebra. Two successive displacements are equivalent to a
single displacement whose length may be very diffenent from the sum of the lenghts
of the original displacements. We can describe the Cleveland to Toledo by the

equation: 110 miles (Cleve=Tol) = 125 miles (Cleve=Col) + 140 miles (Col-Tol)

Any quantity that has direction, specified by a number accompanied by its units and
is governed by the same rules of. algebta that govern displacements, is called a
vector quantity. The number (with units) is called the magnitude of the vector.
These rules are the rules of vector algebra. In the following sections vector
addition and subtraction as well as multiplication of a vector times a scalar will
be described. A description of the multiplication of a vector times a vector will
be given in later chapters when it will be used in solving problemse.

A vector is represented on a diagram by drawing an arrow. The length of the arrow
is made proportional to the magnitude of the vector by choosing an appropriate
scale. The direction of the vector is given by the direction of the arrow. 1In
print, symbols representing vector quantities are represented by drawing a short
horizontal arrow over the symbol.



3 -2 GRAPHICAL METHODS OF ADDITION AND SUBTRACTION OF DISPLACEMENT VECTORS

Since we have defined vectors in terms of the rules of algebra of displacements, w
will first consider the addition of two displacements.

In Figure 10-5 we have two displacements, 2 and B. If a body starts at_a point,
called O, and undergoes displacement A first, followed by displacement 'ﬁ, its
motion is described by Figure 10-5b. Here the object will proceed from point O
%o point P, and then go to point Q, where the line OP represents the displacement
A and the llne PQ represents the displacement B. The total displacemenf, from the
initial point O to the final point Q is a vector we can call C. Thus, C is

equivalent to A followed by B, or . U RS

[Note...Figure 10-5 is a scale drawing where l-cm on the drawing represents 2-meters
of displacement. The displacement A therefore represents 5-meters, B represents
3.0-~meters, and the vector sum C has a magnitude of 5. 8—met.ers.]

A il

(a) (b) (CJ
Figure 10-5

If the object undergoes the displacement B first, and then A, the motion is
described by Figure 10-5c.” Here the object goes from O tgo P' to Q'. The total
displacement js the vector C' That is, the displacement C' is equivalent to the
displacement B followed by displacement A, or __ . o
C' = B + A

In Figure 10-5d, vector A and vector B have been positioned such that their tails
are at a common point. The parallelogram is completed by drawing PQ parallel to
OP' and then drawing P'Q parallel to OP. A line drawin from O _to Q represents
the vector sum of vectors A and B which we have called vector C. It is clear that
this parallelogram is composed of the two triangles that are in Figure 10-5b and
Figure 10-5c. Therefore, the displacements C and C' are equal and:

i s i ot

A+ B = B + A

This means that the sum of two displacements, or vectors, is independent of the
order in which they are taken. Further we have two rules for adding, either of
which may be used.

1. To add two vectors, first draw either of the two vectors. Then starting
at the head of the first, draw the second vector. The sum of the two
vectors is the vector drawn from the tail of the first vector to the
head of the second. This is shown in Figure 10-6b.



2. To add two vectors, first draw either of the vectors. Then, starting at
the tail of the first, draw the other. With these two lines as two of the
sides, complete the parallelogram. The sum of the vectors is the vector
formed by the diagonal from the point where the tails of the vectors meet
to the opposite corner of the parallelogram. This method is shown in
Figure 10-6c. The sum of the two vectors is called the resultant.

5
Yo W 5
R
(b) ()

(a)
Figure 10-6

These two rules for the addition of two vectors can

be extended to the process of adding three or more
vectors. The first rule is applied in the following
way: Draw the first vector, and from its head draw
the second. From the head of the second, draw the
third, and from its head, draw the fourth. Continue
the process until all the vectors have been drawn.

The sum is the vector drawn from the tail of the

first vector to the head of the last (see Figure 10-7).
The second rule can be applied to more than two v
vectors by first getting the sum of any two of

the vectors and then adding this sum to the third
vector. This sum can be added to the fourth and Figure 10-7
SO On.

al
Wi

=}
I

We can extend the process of addition of displacements to include subtraction by
defining the negative of a displacement vector, and then asserting that subtraction
is the same as the addition of the negative of a displacement vector. In Chapter
9, we used the negative sign to indicate a displacement opposite to that of
posztlve. Here we will define the negative of vector a to be a vector -d, which

is equal in magnitude, but opposite in direction to 2. With this meaning of the
negative of a vector, we can define the process of subtraction as the process of

adding the negative of a vector as shown in Figure 10-8b. Thus:
i ity

= i
a - b = a + (-b)

E. ]{ A-B
B 3
”,,ffilf)r — A
A A-B
(a) (b) (e)

Figure 10-8



There is also a second way to subtract one displacement from another. To do this
place the two displacement vectors tail-to-tail and draw a line connecting their
heads. The direction of this displacement is from the displacement being
subtracted to the other displacement (Figure 10-8c). As we can see, the difference
is the same as in Figure 10-8b. Thus these two methods of vector subtraction are
equivalent.

Note...Further analysis of Figure 10-8 reveals that '1.3' - ¢ equals the negative of
A - B as the only difference is the direction of the vector difference.

3 -3 RESOLVING VECTORS INTO COMPONENTS

We have been adding two or more vectors to find their resultant. The two vectors
combined in this way are called components. Frequently, we will be interested in
the opposite process, that of beginning with a single vector and then finding its
components in certain directions. This process of finding the magnitudes of the
component vectors along specified directions is called resolution of a vector into
its components.

The method of resolving vectors into specific components is opposite to that of
combining two component vectors to find their resultant. We will start with the
resultant and then find its two components as follows.

L
1. Draw the given vector A to scale and in the given direction (Figure 10-9a).

.
2. From the tail of A, construct two lines OX and OY in the direction that
the two component vectors will point (Figure 10-9b).

-5
3. From the head of A, draw two lines PS and PT parallel to lines OX and OY
(Figure 10-9c). Note that vector A is a diagonal of a parallelogram.

L. On lines OX and OY, construct arrows from O to S and O to T (Figure 10-9d).

- -
The two arrows labeled B_and C (Figure 10-9d) represent the two component vectors
of the resultant vector A.. The magnitudg of these two component vectors can be
found using the scale from which vector A was constructed.

b i
T P P P
T ; ¢l 7
0 X 0 5 X 0 7 -
(2) (v) (c) (d)
Figure 10-9

Consider a barrel that can be rolled up an inclined plane with a force less than
that required to 1lift it. Why this is so can be understood by considering the
components of its weight. (Since weight is a vector quantity, we can treat it
like a displacement vector.) We can represent the weight of a barrel on an
inecline as a vector that can be separated into components. Figure 10-10,



=
The vector AB represents the weight of the barrel; the vector AC the component
of force that is equal to the force the barrel exerts against the incline; the
vector AD represents the component of the weight parallel to the incline. When

Figure 10-10

It is easier to
roll the barrel up the incline
than it is to lift it vertically.
Why ?

the barrel pushes down on the incline, the incline pushes back with a force
exactly equal but opposite to component AC. Therefore the component AC is
neutralized and has no tendency to produce motion. It is the component AD that
accelerates the barrel down the incline. If we wish to prevent the barrel from
rolling down the incline, we must apply a force equal and opposite to the force
ADs If we wish to roll the barrel up the incline,
we must push with an initial force somewhat
greater than AD to accelerate it from rest, but
once it is moving a force equal and opposite to
AD is all that is required to maintain constant
velocity. Ve can see from Figure 10-11 that

the vector AD is shorter than the vector AB;

hence the force necessary to roll the barrel up
the incline is less than the force necessary to
1lift the barrel vertically. Note that the
steeper the incline, the greater is the

magnitude of AD. Figure 10-12. We would have ,

to push harder to roll a barrel up a steep el :;;?e‘;‘z;?;‘é t?:
incline; similarly, if we let the barrel roll wottor AB. The batrel a6
down a steeper incline the greater component AD celerates down the plane
causes a greater acceleration. When the incline because of component AD.
is tipped 90 degrees (vertical), the component ;.

AD equals the weight AB and the barrel reaches Figuoe. 20-11
its maximum acceleration, 9.8 meters per second each second.

L

Figure 10-12

Component
AD increases as the angle
of incline increases.




35 VELOCITY CHANGES AND CONSTANT ACCELERATION 7

Figure 10-12 is a drawing of a multiple—flash photograph of a ball projected hori-
zontally with an initial velocity of 2.0 m/ sec and photographed every 1/30 second
as it falls. One finds, when looking at the vertical lines on the drawing, that
during each interval, the horizontal
component of the displacement remains
constant. This indicates a constant ) ®
horizontal velocity component. In- ‘ ‘
spection of the vertical displacement ®
shows that during each interval the ®
spacing increases. Thus the vertical o
velocity is increasing.

We will consider projectile motion as two ®
motions occuring at the same time. The
horizontal part of the motion is uniform %
motion in a straight line. The vertical
part of the motion is uniform accelerated ’
motion as its motion is governed by the
laws relating to falling bodies that will - I
be discussed in chapter 12.

We shall now find the instantaneous veloc- .

ity vector every 0.10 second time interval. Figure 10-12

We know the instantaneous velocity vector

always points in the direction of the path.

In addition we know the horizontal component of this and any other instantaneous
velocity vector to be 2.0 m/sec. To find the instantaneous velocity vector first
draw a line indicating its direction which is in the direction of the path (see
Figure 10-13a). Now draw the horizontal velocity vector to scale placing its tail
at the upper left end of the line representing the instantaneous velocity vector
(Figure 10-13b). Finally draw a line perpendicular from the head of this arrow
until it crosses the line representing the instantaneous velocity vector (Figure
10-13c). The arrow along the direction of the path represents the instantaneous
velocity vector at that time. Using this method we plotted the instantaneous
velocity vectors every 0.10 second time interval (Figure 10-14).

—

h v,

path \§ h

path path -
vinst
(a
) - (e)
Figure 10-13

Figure 10-15 shows the instantaneous velocity vectors with their tails at one
common point. Using the principle of vector subtraction we can see that the change
in velocity of the instantaneous velocity vector is constant in magnitude and
direction (downward). The average acceleration is therefore constant. Because the
average acceleration is constant throughout the motion, we can be almost certain
that the instantaneous acceleration is also constant throughout the motion. To
confirm this, of course, we might want to take additional strobe photographs of the



falling ball, using
shorter and shorter time
intervals to approach
the 1limit as At = 0.

Velocity scale
0 2 L

| 1 l R,

But even without this,

we can be pretty certain
of our conclusion. Con-
sequently, for the
instant of the nth flash,
we can write the instan-
taneous velocity as:

m/sec

v v. + nAv
= -
n i

Here V. is the initial
horizontal vector (2.0
m/sec), n is the number
of 0.10 sec. time inter=-
vals_sjnce we started,
and Av is the constant

change in velocity that Distance scale

occurs each 0.10 sec. 0.0 0.2 0.4 0.6
time interval. By add- L ] I | | | I
ing n of these changes meters

to the original velocity,

we get the velocity n

intervals further along.

. Figure 10-1L,
We can rewrite the last

equation so that it more

closely resembles the equations we developed for the description of motion along a
straight-line path. (See Chapter 9, especially Section 9~7 and box). There we
defined the acceleration along the path as:

a = ﬁ\'/ At.

By both multiplying and dividin _’5 Z.h y At, 0.00 sec
we get: 5 — Dv
¥ Wt Yt ORab Y 0.10 sec

Now, dividing Av by At, we shall introduce the

vector a = Av/At. Thus our equation now 0.20 sec
becomes: > = o
Vv, = V3 + nAta 0.30 sec
Replacmg nAt by t, the time during which the 0.40 sec
velocity has changed from its initial value vl 3
to its value when the nth flash occurs, we can
express the velocity at time t as: Velocity Scale
¥ - W, + 8t P 1 2 3
x e
Note that since v. is in a horizontal direction m/sec

and 2 in a downward direction, ¥ will point more
and more downward as time progresses. Figure 10-15



Proper analysis of the apparently complicated parabolic motion shown in
Figure 10-12 is accomplished by resolving the motion into perpendicular
components. The motion in the horizontal direction is uniform with ¥V, = 2.0
m/sec. Since the motion is uniform, the horizontal displacement d wHen the
object crosses the lowest white line is:

E; = vht = 2.0 m/sec x 12(1/30 sec) = 0.8 m

The motion in the vertical direction is accelerated motion with the initial
vertical velocity vl equal to zero. (The initial velocity was in the horizontal
direction only.) Heére the vertical displacement is found by using the horlzontal
lines which are spaced 15 cm apart. The object falls a vertical displacement d
of 75 cm or 0.75 m as it crosses the lowest white line.

The resultant displacement E; is found as follows:

d—.; - @ + & = 0.8m(horiz) + 0.75m (vert) = 1.1m (Horiz 43.1°-
down )

To determine the resultant velocity V. as the object crosses the lowest white
line we first determine the perpendlcglar components and then add them using
vector addition.

The vertical velocity v occurs after the object falls 0.75 m in 12/30 sec. It
is found by.

= it(vf + vi) Thus: Ve = 2dv LA LSS 3.75 m/sec
t 12/30 sec
ch > —= -
The resultant velocity Yoo oty & X

= 2.0 m/sec (horiz) + 3.75 m/sec (vert)
= 4.25 m/sec Horiz 61.9° Down
In summary the displacement and/or the velocity can be determined at any position
by:
1. Find the horizontal and vertical components of displacement and/or velocity.

2, Combine the two components using proper vector addition.



WRITTEN EXERCISE CHAPTER 3 =F=

(graph paper ruler and protractor needed)

oz o - -» 5
By any method you wish, find the sum (A + B) and the difference (A — B)
of the vectors listed below.

- -
A = (3, 45 deq) H

Il

(5, 120 degqg) {length in arbitrary units)

Show by scale drawing that the associated law of addition
- - - - - -

Ci.e. (E + F) + 6 = E + (F + 81

holds for the vectors below. Be careful you don’t make any unstated
assumptions.

- -2 -
E = (10, 90 deqg) F = (5, 135 deqg) G = (6, 180 deg)
—
Find the x and y components of the vector, V = (11, 160 deg).

If the x—component of a vector is —6.0 and the y component of the same
vector is —-B8.0, completely specify the vector that has these
components.

What point is Banesh Haffmann making in the following:

The Curious Incident of the Vectoral Tribe

It is rumored that there was once a tribe of Indians who believed
that arrows are vectors. To shoot a deer due northeast, they did not
aim an arrow in the northeasterly direction; they sent two arrows
simul taneously, one due north and the other due east, relying on the
powerful resultant of the two arrows to kill the deer.

Skeptical scientists have doubted the truth of this rumor, pointing
out that not the slightest trace of the tribe has ever been found. But
the complete disappearance of the tribe through starvation is precisely
what one would expect under the circumstances; and since the theory
that the tribe existed confirms the NONVECTORAL BEHAVIOR OF ARROWS, it
is surely not a theory to be dismissed lightly.
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INTRODUCING VECTOR ADDITION

by

Robert D, Smith
Chester High School

Of all the devices used to illustrate vector addition, a "walking" toy
animal has a distinct advantage: appropriate "traveling music" can be
supplied while the animal is undergoing its displacement.

The toy animal we use is a walking cow, and the traveling music is a
teped excerpt from "The Light Cavalry Overture." This ludicrous combination
of sight and sound removes some of the "heaviness™ that students frequently
associate with vectors.

The cow is confined to a straight line path by using a board, which
had warped to produce a nice concave track. When this board is balanced on
a dynamics cart and then pulled across a demonstration table, a displace=-
ment at right angle to the cow's motion is obtained. Without previous
experience with vector addition, most students can predict correctly the
displacement resulting from the two simultaneous displacements at right
angles to each other.

Frames of reference can be introduced by placing a small doll on the
board and asking students to describe the displacement the doll would see,
both when the board is statiomary and when the board is displaced at right
angle to the displacement of the cow. (Both descriptions would be the same.)
A "bird" suspended above the table represents am cobserver in an Earth frame
of reference. After describing the displacements observed by both the doll
in the moving frame and the bird in the Earth frame, the question: "Whose
description is correct - the doll's or the bird's?" emphasizes that all
motion is relative.

7|~ WEIGHTED STRING
PULLING COW

DYNAMICS CART
Vicow) v
= __/’:I S i
=1 |

V(cart)

7 —COW
VECTOR DIAGRAM

TOP VIEW OF DEMONSTRATION TABLE
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Problems pertaining to a boat moving in a stream at right angles to a
current, or an airplane flying at right angles to a jet stream become less
formidable when the elements of the problem are related to this simple demon-
stration.

Another use of the walking toy: horizontal and vertical components of
force can be introduced in a subtle manner. The cow does not walk off the
end of the board when the weighted strimg pullimg it becomes vertical.
When the cow reaches the brink = it stopsl!

Editors' Note: After reading Bob's article we could not resist the temptation
to include the following paragraphs from Banesh Hoffmann's book, About Vectors,
Dover Publications, Inc., 1975.

THE CURIOUS INCIDENT OF THE VECTORAL TRIBE

It is rumored that there was once a tribe of Indians who
believed that arrows are vectors. To shoot a deer due northeast,
they did not aim an arrow in the northeasterly direction; they sent
two arrows simultaneously, one due north and the other due east, re=-
lying on the powerful resultant of the two arrows to kill the deer.

Skeptical scientists have doubted the truth of this rumeor,
pointing out that not the slightest trace of the tribe has ever been
found. But the complete disappearance of the tribe through starva-
tion is precisely what one would expect under the circumstances; and
since the theory that the tribe existed confirms two such diverse
things as the NONVECTORAL BEHAVIOR OF ARROWS and the DARWINIAN PRIN=-
CIPLE OF NATURAL SELECTION, it is surely not a theory to be dismissed
1 1811 tl Y-

Dr. Bartlett!'s talk, "THE FORGOTTEN FUNDAMENTALS OF THE ENERGY CRISISY
which was presented at our spring meeting last year, is available on
video tape. Send three dollars and 55 minutes worth of one half inch
EIAJ or three-qguarters inch U=MATIC video cassette tape, color or B&W to:

COLONIAL SCHOOL DISTRICT
Colonial Instructional Television

Germantown Pike
Plymouth Meeting, Pa. 19462




RASTIC TRICONOMETERY FUNCTIONS

IN REFERENCE TO THE ADJACENT RICHT TRIANGLE, THE
RASIC TRICG FINCTIONS ARE DERTNED AS FOLLOWS:

2 (length of =zide oppositelZA)
SINE OF 4 A = ¢ (length of hypotenuse)

b (lencth of side adjacent ZLA)

COSINE OF LA =
¢ (length of hypotenuse)

TANGENT OF £ZA = a (length of side opposite ZA)
b (length of side adjacent Z-A)

WRITTEN IN FORMUTA FORM: sin @ = O_
H
H
iy - o)
cos 8 = "
0 0 ™
ta —
n@ A A

Since these are definitions, theyshould be memorized, The values for
the sin, cos, and tan can be found in the trig tables in your text book
and lab book in the back, All of the sides and angles of a richt tri-
angle may be determined by using the above information; two cuantities
must be known, such as the size of the one angle and the léngth of a
‘side, DO NOT apply these relationships directly teo SCALFNE triangles,
All you will get will be wrong answers!

WO RELATIONSHIPS THAT MAY ZE APPLIED TO ANY TRIANGLE:

SINE LAW: a At b = o Where a, b, and ¢ are
sin A sin B i ain C sides opposite the
correcronding ancles
o
COSINE LAW: c? = a“ + be - 2ab cos C Where a, b, and ¢ are the
> 2 length of the sides,

7

b~ = s b c2 - 28¢ ¢08

32 55 b2 + 02 - 2be cos A

HYPOTENUSE RILE: (PYTIL’U OREAN THEOREM) 4 USE WITH ’?TF‘TT"‘ TRIANGILES ONLY.
c? = a2 + b2
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MOTION OF A PROJECTILE

Background Information

When a ball is thrown horizontally, it follows a curved path in a
downward direction until it reaches the ground. The motion may
appear to be very complex. However, i+ we assume that the motion of
the ball is actually a combination of two separate component motions
aoccuring at the same time, then the curved motion may be easily
understood and we will be able to predict the path of the object (the
trajectory) in advance. The two independent components of the
projectile’s motion may be described az follows:

HORIZONTAL COMFONENT

The hand exerte an unbalanced force (in the horizontal direction)
thus causing the ball to accelerate from rest. 0Once the ball
leaves the hand. there is no unbalanced horizontal force acting
on the ball. Thus there can be no horizontal acceleration which
means that the horizontal component of the velocity must remain
constant for as long as the ball is in flight. (Note...We are
assuming that the air resistance can be neglected.)

We are now in position to describe the horizontal distance d as
varying directly with time.

VERTICAL COMFONENT

The gravitational attraction {(pull of the earth) causes the ball
to have a vertical motion that is accelerated downward. Thus for
each equal interval of time, the unbalanced force will cause the
vertical component of the velocity of the ball to increase. The
result is that the vertical displacement d increases during each
time interval. To calculate the vertical displacement we will
use the © kinematic equations identified in chapter 1.

Furpose of this Experiment

The

In this investigation we will have & rolling ball trace its path
(trajectory) on a sheet of paper. At regular spaced time intervals,
we will make measwrements of the horizontal and vertical
displacements of the rolling ball with respect to the starting
position. We will then compare the displacements to see how each
varies with time.

Apparatus

Fackard® s Acceleration Apparatus
is a simple device for reducing
the acceleration due to gravity
thus allowing us to make
laboratory measurements. The
picture at the right gives an
indication of how the apparatus
looks in an operating position.
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Adjustment

Fosition the apparatus on the legs such that the angle of the incline
is about half the maxium angle. Adjust the leveling screws until the
upper edge of the plate is level. Slip the graph paper under the
starting trough and spring clips. (One can fasten the graph paper to
the apparatus with masking tape if vou so wish.) Adjust the paper so
that the vertical zero line coincides with the zero marks just above
and below the glass plate so that the horizontal "80" line is
opposite the "BO" mark just to the left of the plate. The carbon
paper can then be placed over the graph paper without being clamped
when you are ready to make a recorded run. Roughly adjust the
position of the starting trough so that when the ball rolls off, it
will mark a spot on the horizontal zero line. Next adjust the ball
stop clamp until the rolling ball crosses the bottom of the paper at
or very near the lower right-hand corner. The final adjustment to
the starting trough is now made to assure that the ball strikes the
paper on the intersection of the vertical and horizontal zero lines.

Doing the Exuperiment

With adjustments made so that the mark made by the ball leaving the
starting trough is exactly on the zero point, place a sheet of soft
carbon paper over the graph paper with carbon side down. Let the
rolling ball make a carbon trace on the graph paper.

Change the angle of the incline to about twice that used and then
allow the reolling ball to make a carbon trace on the paper. Finally
remove the carbon paper and the graph paper from the apparatus.

Analysis of Data

Make three columns of figures, the first, (t) to represent the
successive time intervals during which the ball traveled on the
papers the second, (d,) to represent the total number of spaces that
the ball went horizontally from the zero verticial line in time (t)3
the third, (dy) to represent the total number of spaces that the ball
fell below the zero horizontal line in time (t).

Because the horizontal velocity of the ball was constant, it took the
ball equal times to travel the horizontal distance between lines on
the paper. It is therefore possible to let the width of these
vertical sections represent egual successive time intervals. Each
20th vertical line on the graph paper is numbered. These numbers are
proportional to the times taken by the ball to travel across the
paper to each line.

Finding the Solution

Find the mathematical relationship of the horizontal displacement
(dp) @s a function of time of travel (t). Next find the mathematical
relationshiip of the vertical displacement (dy) as a function of the
time of travel ().
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MOTION OF A FROJECTILE
WHAT HAVE WE LEARNED

) B What is the value of the slope in the graph of (dy) vs ()7
What guantity does the slope represent? Write the mathematical
relationship between dp, t, and the slope of the line.

2« Describe the change of slope in the graph of (dv> ve {(t). What
does this change mean?

Z. What is the value of the slope in the graph for (dv) V& (tz)?

What quantity does the slope represent? Write the relationship
between dy. s« and the slope of the equation.

4. Which of the following is the only factor common to both the
horizontal and wvertical motions of a projectile: acceleration,
velocity, time, displacement?

5. Why is the effect of friction between the ball and the paper as
well as the effects of air resistance disregarded in this
experiment?

s Why does the distance from one vertical line to the next on the
trace of the ball’s trajectory represent both equal horizontal
displacements and equal time intervals?

7. What is the effect of increasing the angle of inclination of
the apparatus on both the horizontal and vertical components of the
displacement of the ball? Refer to some given point on its
trajectorv.

8. Describe the motion if the angle of inclination of the plane is
zero degrees.

?. Describe the motion for an angle of 20 degrees.
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Motion of a Projectile — =3

What have we learned?

le What is the value of the slope in the graph of (& ) vs (£)? What quantity
does the slope represent? Write the mathematical 'relationshiv between
dh’ t, and the slope of the line.
2.0 =/, s olg = UsT
2. Describe the change of slope in the graph of (dv) vs (t). What does this
change mean? ,  iceocisie 2> see.

3¢ What is the value of the slope in the graph for (d.) vs (t2)? What
guantity does the slope represent? Urite the relagionship between d_,
1<y, and the slope as an equation. 4

O 30 M/:I.. A e oy S

Le Which of the following is thé only factor common to both the horizontal
and vertical motions of a projectile: acceleration, velocity, time,
displacement? e

S

5« Why is the effect of friction between the ball and the paper as well as

the effects of air resistance disregarded in this experiment?
AT iNrEfme.

6. Why does the distance from one vertical line to the next on the trace
of the ball's trajectory represent both egual horizontal displacements
and equal time intervals?

oﬂ; = Vg &

7« What is the effect of increasing the angle of inclination of the apparatus
on both the horizontal and vertical components of the displacement of the
ball? Refer to some given point on its trajectory.

HORILONTRL -2 AOr VERTLcm L —> Wex

8. Describe the motion if the angle of inclination of the plane is s
- AAOEIBONTA —

3 . u e}
9« Describe the motion for an angle of 907,
Hre VERTER

2);, i5 Comsrmnz7 +e C/-t- ~Z
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Student. Exercises THE ACCELERATION VEGTIOR

In your previous studies in this course, you have learned something about acceleration.
In chapter 9, section 6, you learned that the average acceleration along the path was
expressed by the equation: i

& =
“avg st "

In the same section you learmed that the instantansous acceleration along the path had

a rather strange expression: y limit Av

path © At=0 At °

In chapter 10 you have been studylng the vector applications of the same ideas. You

have found that: n v

aavg nt :

and that the imstantaneous acceleration vector is expressed by the relationship:
é* L ldmit o v
inst at->0 At °
Againg that strange mathematical notation! It would seem that, by allowing the time
interval between the measurements of twe successive instantaneous velocity vectors to
approach zero; there would be no measurable Av, and consequently, no acceleration.

The purpose of this exercise is to convince you that such is not the case; that a real
value for the instantaneous acceleration vector exixts, even for a 4t of zero. To
examine these ideas, we will deal with a specific situation. The basic facts we uncover
about this specific case will also be true in general.

Consider an object traveling with a
uniform speed of exactly 60.C m/sec in
a perfectly circular path, making one
complete revolution in exactly 60.0 sec.
[This nmotion is called uniform circular
motion. ] Even though the speed is not
changing, you should recognize the fact
that acceleration is going on because
the velocily vector is constantly
changing in direction. In 15 sec the
direction of the instantanecus velocity
changes by 90° as seen in Figure 1. Can
you justify that the instantaneous
velocity vector changes 60° in 10 sec?

o

Your first task will be to find the
average acceleration over the_}ﬁ sec
tlme interval. Knowing that a ek =

.?
l,w/ Oty you must find Av which is

the vector difference between vb (the

velocity at t=0) and ;;5 (the velocity Fige 1. (The magnitude of ?he velocity

i = e : vectors (lengths of arrows) are all the
at t=15). You should be familiar with same, but their directions are all dif=
the process used for finding the vector ferente This difference in the directions
means that acceleration is taking places
Noteeesthe reference arrow pointing from
0 and 15 seconds, which is: point 0 towards the center of the

o R . circular pathe The rumbers represent

(=) 6 4
av=v15m\r0 = v15+ —‘i.ro. OHT 1N SeCe

difference between the velocities at



Student Exercise: THE ACCEILFRATION VECTOR & 2w

This manipulation is indicated in Figure 2. =
v
Refe 1
After determining /v, one needs only to ® “%Ergifgﬁﬁ E: 5 2 \3//15
divide by At to determine the average 90
acceleration.
—=>

The direction of the average acceleration
vector needs to be expressed in terms of 0 AV
the reference direction (that has been
chosen for us). Note.e.othat the reference
direction is indicated both in Figure 1

and in Figure 2. -

What will happen to the average acceler— Fig. 2. The angle (a) is measured
ation vector if we calculate its magnitude between the reference direction and the
and direction over shorter and shorter vector Ave Will it always be half the
time intervals? By so doing, we would angle between the two instantaneous
allow At to Yapproach zerot. To find velocity vectors? How do you find the
out, we will determine its magnitude and average acceleration vector from the
direction over the progressively shorter AV vector?

time intervals: 15, 10; 5, 3; 2, 1; and

0.5 seconds, One fairly obvious result is

that the valve for the average acceleration

gets progressively closer to whatever it might be for a At of zero. This would be the
ingtantaneous acceleration. Using the indicated method, accumulate the data called for
in Table I. Be precise in your calculations; we are after a precisc relationship.

Using the data you have collected, construct the following two graphs:

1. THE MAGNITUDE OF THE AVERAGE ACCELERATION AS A FUNCTION OF At.

Expand your acceleration scale as much as possible by reserving nearly all
of your acceleration axis for the range of values you obtained.

2. ANGLE (a) AS A FUNCTION OF Ate

Carefully extrapolate your average acceleration curve to zero at At. What
value do you get for the magmitude of your instantaneous acceleration vector?
Do the same for your angle (a) curve. What is the direction of your
instantaneous acceleration vector?

The results you have just obtained gave the instantaneous acceleration vector at the
point chosen as O« Any other point on the circular path could have been chosen wilhe
out materially affecting your results. Write a generalization for the instantanecus
acceleration vector for any point on this circular path.

From the information given and the appropriate formila found on page 212 of the text,
calculate the radius of the circle. What is the name for this kind of motion? for
this kind of acceleration? Using the appropriate formula, again found on page 2124
calculate the acceleration. How does il compare to the value obltained by extrapolation
on your graph?



Student Exercise:

THE ACCELERATION VECTCR

-3

Table I. DATA FOR AVERAGE ACCELERATION
At (sec) Av (m/sec) - (m/secz) ' a (deg.)
g = T = =

15 BY. 85 T 66 I AS

10 G6o.00 ¢.0o i 3o

5 3/. 06 G 21 | z

3 Py D g 6.26 1 9

2 Ll 6. 27 | A

- 6. 28 6. 28 | 2
05 3. 19/ 6.28 l o

fom om e B s

Alternatives for finding AC and angle EAC, given
AB, BC, and angle BAD.
1le Scaling
Choose an appropriate scale and lay out vectors
AB and BC in the given direction. Heasure vector AC
and using the scale factor, determine the value it
represents. Also measure angle EAC.
2. Using Sine and Cosine Law
Using Cosine Law to find AC
AC =/ (4B)? + (BG)? - 2(AB)(BC)(cos ABC)
Using Sine Law to find angle EAC
i i s
sin BAC =~  sin CBA
Angle EAC = Angle BAC - Angle EAB
3. By resolving vectors into X~Y componentse
Using basic trig. to find X~Y components of AB, which are: BD and AD
y ED _ Ap
sin BAD =T cos BAD = BA
Finding angle EAG:
tan EAC = 32 EG = BG = BE EA = BD
Finding AC . - :
sin EAC = %c
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Chapter 3 Test e Nama

A man lives on an island 4 km offshare, across a
The vector V; in the diagram channel which has a 3 km/h current when the tide
is rumning. On a dark night, with the tide running,

at the right is equivalent to

- he rows from the mainland dock toward the island,
o - Va 62 keeping his beoat aimed directly north. The island
(A) Vi =V 5 dock is due north of the mainland dock. He rows his
- 3 L3 ) 90 boat at a speced of 4 km/h relative to the water.
1 2 —
- - Vi
() W = Ny A 80 20
== ~ i .
(D) V2 + V2 PPN TR R, e P ol j N
-
(BE) V; cos 8 I W ‘}'E
E ' Current

SLRRE C :
3 kn/h s

A plane travelling at 200 m/s north turns and ﬂ‘.*
then itravels south at 200 m/s. Its change of E 4 ¥alnland Dock fe. i
velocity is . e s o L T SR S SC i
(A) 0 m/fs

SN ' _ 4,  Where will he land?
B m/s north

(A) at the dock directly opposite his starting puint
{C) 200 m/s south

s f® 3 km downcurrent from the island dock
D 400 m/s north

) (€} 4 km downcurrent from the island dock
W 4100 m/s south

(D) 5 km downcurrent from the island dock
(E) 7 km downcurrent from the island dock
A dart is thrown horizontally toward X with a

speed of 20 m/s. It hits & point ¥ 0.1 s later.

Because of the current he will have a speed

%3_ ”'- 20 m/s 5-' relative to the earth of
X

(a) 1 km/h (C) 4 km/h (B} 7 km/b
{B) 3 km/h @ 5 kn/h

The distance XY will be approximately

) zm 6 In' order to row directly across to the island dock,
* he should have set his course upcurrent at an angle
() 1m west of north, fThe sine of that angle is
' 5 4 3
{C) 0.5 m (A) 3 {c) 3 (5) 3
(D) 0.1m (2) ?. - _ii

@ 0.05m



Chapter 3 Test

As a vehicle goes from 3.0 m/s [N 90° E] to
4.0 m/s [N 270° E] the change in velocity is

(A) 1.0 m/s, [N 90° E]
(B) 1.0 m/s, [N 270° E]
(¢) 5.0 m/s, ¥ 315° E]
(D) 7.0 m/s, [N 90° E]
& 7.0 m/s, [ 270° E]

Given the vectors P and 6 above, which one of the
vectors shown below best represents the wvector

% -
ZE - O

e {B) ot () /

{D) (B)

w2

10.

Name

Vectors P and Q in the grid below represent
velocities. Each side of each little square
in the grid represents a speed of 1 m/s.

1 {5 W

Let vector P represent one velocity component of
a particle. Let vector Q represent the other
velocity component of the same particle. The
resultant speed of the particle is

(n)
(B)
(c)
(D)
(E)

11.8 m/s
13 m/s
13.8 m/s
15 m/s

15.8 m/s

Let vectors P and Q represent the initi§l and
final velocities respectively of a particle over
a 4.0 & time interval. Then the magnitude of the
average acceleration during this intervel 1is

(a)
(8)
&
(D)
(E)

3.25 m/s?
3.45 m/s?
3.75 m/s?
13 m/s?

15 m/s?



Chapter 3 Test

A proten situated in a magnetic field is observed

to travel in a circular path. The positions of
the proton at times T, 2T and 3T are shown 1n the

figure below.

t = 31 t = 2T
=T
l' Which vector best represents the displacement of

the proton from the centre of the circle at t = 2T?

\\

(A (® () ) (®)

Which vector best represents the average velocity of
the proton hetween ¢ = T and = 2772

) @® \(C) ~_ (@ (E)
RS

ie.

Which vector best represents the instantaneous
velocity of the proton at t = 277

) / ® \m\ (» / BE

i

4.

157

Name

Two cars approach an intersection at right angles.
Car A is travelling with a velocity of 30 km/h east,
and car B is travelling with a velocity of 30 km/h
north.

. N
: W+E .
H S
¥
i
A [
I . e ——

- —

The velocity of B relative to A is
(A) 42 km/h SE
ﬂﬁ 42 km/h NW
(C) 60 km/h NW
(D) 60 km/h

m
=

(5) 42 km/h !

I.%

A ship is travelling B.0 m/s due west in still water.

A passenger is walking along the deck at 3.0 m/s

toward the back end of the ship. He throws an apple
core north at 12 n/s. The velocity of the apple core
relative to the water is

(A) ¢265 m/s in a direction between north and northwest
# 13 n/s in a direction beitween north and northwest
(C) 13 m/s in a direction between west and northwest
(D) 17 m/s in a direction between north and northwest

(E) +265 m/s in a direction between west and northwest



Chapter 3 Test ] en Name

lo. The velocity of a particle changes from 5 m/sec north to 8 m/scc N 45° E in
3 seconds. Draw vectors representing, and state the magnitude and direction of':

a. the change in velocity, e B A 4 ”/s@ b= 6.6°

b. the acceleration of the i /.9 '“5/5.‘-@ 8- été‘@
- &°

®

"1

1.
9e

A -

Oy
X

A billiard ball hits a cushion at a velocity of 20 em/sec at 30° relative to
the edge of the cushion and rebounds withoui loss of speed so that the angle
of reflection equals the angle of incidence. What has been the change in:

a+ speed, O >

alkd

=4
be. veloc it)’q <0 i >

%

3 a*»‘*))

V’
20% : 0’

B o2, & 3. E 4 B 5. D 6D 1. 8 A
& 10. C. M. 7 19, & 135 _C_ . & 18 §




